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ABSTRACT

This report presents, in two volumes, a recursively formulated, first-order,
semianalytic artificial satellite theory, based on the generalized method of
averaging. Volume I comprehensively discusses the theory of the generalized
method of averaging applied to the artificial satellite problem. Volume 11 (to

be published in early 1978) presents the explicit development in the nonsingular
cquinoctial elements of the first-order averaged equations of motion. The re-
cursive algorithms used to evaluate the first-order averaged equations of motion

are also presented in Volume 1I.

This semianalytic theory is, in prineiple, valid for a term of arbitrary degree
in the expansion of the third-body disturbing function (nonresonant cases only)
and for a term of arbitrary degree and order in the expansion of the nonspher-
ical gravitational potential function. This theory has been implemented in the
Goddard Trajectory Determination System (GTDS) Research and Development

(R&D) version.
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s 1 SECTION 1 - INTRODUCTION
I‘ u

In the past, considerable attention was focused on the formulation of the equa-

N J tions of motion for complex dynamical problermis and on the method of solution
to insure that a sufficiently accurate result, meeting the investigators require-
L ments, was obtained with an economy of effort. Without such careful consider-
ation, the most prominent problem of classical mechanics, i.e., the motion of
planets about the Sun, would probably not have been solved with anywhere near

. the accuracy actually obtained. It is a testimony to the ability of men such as

Lagrange, Gauss, Leverrier, Hill, Hansen, and others that not only ingenious

formulations of the equations of motion were obtained but that the thousands of

(-

arithmetic operations required to evaluate the solution were vrganized in such

P

a manner as to minimize the number of these operations and considerably reduce

[‘—_.

the probability of undetected accidental errors.,

The advent of the high-speed electronic computer has relaxed this consideration

=

by making brute-force, error-free calculations possible. However, the compe-
l tition for computer access has grown rapidly within the last decade. As a result

of this overload on computer resources, current problems of interest should be
u formulated in a manner that not only fulfills the investigator's requirements but

also minimizes computational cost.

2 ! One of the more computationally expensive dvnamical problems today is the pre-
diction and definitive determination of artificial satellite orbits. Maintaining

reasonably accurate ephemerides for the ever-increasing number of artificial

satellites (which include active scieatific, defense, communication, and weather

satellites as well as defunct satellites, launch vehicles, and other debris) requires

a considerable expenditure in terms of computing time. Also, prelaunch mission

several years be generated for the purposes of lifetime and geometry constraint

U analysis requires that several hundred satellite trajectories over periods of up to
ﬂ analysis. In addition, mission feasibility studies consume an inordinate amount

1-1
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of computer time. Generally, these applications do not require the extremely
accurate high-precision orbil generation techniques which rely on the expensive
process of numerically integrating Newton's equations of motion or some equiv-

alent set of differential equations.
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1.1 REVIEW OF ORBIT GENERATION TECHNIQUES

Another approach to the artificial satellite problem is provided by the purely

analytical methods of solution in which analytical formulas for the coordinates

or orbital elements are usually obtained to first or second order in a small
parameter. A standard approach is to separate the short-period, long-period,
and secular components of the motion through a series of canonical transforma-
tions (Reference 1). The secular contributions to the motion are evaluated at

a given time, and the canonical transformation used to remove the long-period
component of motion is inverted to provide the long-period motinn in terms of
the secular elements. Finally, the transformation to remove the short-period
terms is inverted and evaluated with the secular and long-period contributions
to the elements, thus obtaining the short-period contributions to the motion.

Although computationally efficient analytical satellite theories have been devel-

1

oped,” many of these theories suffer from severely restricted perturbation mod-

els. Several thcories are limited to the lower degree zonal harmonic terms in

O eSO e Bl

the nonspherical gravitational model of the central body. The third-body pertur-

bation, when included, is usually restricted to the cases of very close-Earth

| W—

satellites. Also, many of these theories are restricted further by the ure of

the small eccentricity and/or small inclination approximations. In addition,

| o

the use of Keplerian elements in these formulations introduces singularities

caused by vanishing eccentricity and/or inclination. Some of these limitations

ot

are accounted for by the fact that many of these analytical theories were devel-

oped manually. -The tremendous amount of necessary algebraic manipulation

required that these theories be severely restricted.

In the last decade, the appearamce of machine automated algebraic processors
has facilitated the development of analytical satellite theories with more sophis-

ticated perturbation models. All that is required is sufficient computer time

Loy

1Y. Hagihara (Reference 2) gives an extensive list of references to the work in
artificial satellite theory.

1-3
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and storage. However, a reasonably gencral first-order analytical satellite
theory can comprisc tens of thousands of terms which require a prohibitive sior-
age capacity. The only way to reduce the storage requirements for an explicit

. . , 1
analytical theory is to restrict the theory itself.

Finally, although several attempts to incorporate atmospheric drag in analytical
satellite theories have been made, they have proven less than adequate for pro-
ducing reasonably accurate ephemerides over extended time intervals., This is
not surprising in view of the fact that even high-precision numerical techniques
which use sophisticated atmospheric models have difficulty predicting ephemerides

of strongly drag perturbed satellites over periods of several weeks (Refererce 3).

The method of averaging offers another approach to the artificial satellite prob-
lem that has been shown to be more computationally efficient by several orders
of magnitude than the high-precision techniques (Reference 4). In addition, the
method is very flexible with respect to the perturbation models and suffers fewer
restrictions than purely analytical satellite theories. Although not as accurate
as the high-precision techniques, this technique produces results sufficiently
accurate for all but the highest accuracy requirements, e.g., maneuvers, etc.
More specifically, an application to first ordar of the method of averagiug pro-
duces the long-period and secular motion of a satellite extremely accurately in
most cases (Reference 4) and provides for the recovery of probably 90 to 95 per-
cent of the short-period motion (Reference 5).  Consequently, this approach

provides a low-cost, long-term orbit prediction capability for the following:
° Mission feasibility studies

® Mission analysis (lifetime and geomwtric constraints)

lFor cortain applications where one particular type of satellite is cacountered,
e.g., circular geosynchronous satellites, a restricted theory is not culy accept-
able but advisable. If, however, a single theory is to be used for several differ-
ent types of satellited, a general theory is required.

1-4
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. Tracking station acquisition schedules
] Dysamic madeling in definitive orbit determination procedures where
1 either extended data intervals or extended data gaps are encountered
e rnamic modeling required for differential corrvection (DO pre dures
[ | used to solve for dynamical parameters, e.g., high-order ge » we- ial
coefficients
- The motivation for using the method of averaging procedure is as toliows, The
maximum step size which can be used in the numerical integration of a set of
!
! - differential equations is constrained by the highest significant frequency contaimed
therein, The method of averaging is used to remove high-frequency components
| B from the equations of motion. The resalting averaged equations of motion are

L{ integrated numerically but with a significantly greater step size than can e used
with the high-precision equations. The long-perviad and secular components of

the satellite motion are thus obtained. The short-peviod compomnt of the motion
¥ }

e
P
T

can be computed either numerically (Reference 5) or from analvtical formulas

5 ] ‘§ which are presented in Volume 1l of this report. In most cases, the computational
: savings achieved by the lavger step size (which vesults in fewer foree evaluations)
/ U far outwieghs the increased cost of the dervivative evaluation, theveby effecting a

; significant decvease in the overall computational costs.

§

;

1

The techmique of removing the high-frequency terms trom the squations of motion
was first used by Lagrange in his investigations of the plametary motion. Because

of a particular formulation of the equations of motion developed by Lagrange, the

high-frequency terms, in the case of congervative perturbing forces, could be
isolated more or less by ingpection. However, a rigorous mathematicat fouml-

ation for this technique wa. not provided until the relatively recent work by Kevlov

and Bogoliubov (Reference 6) on asymptotic methods for nonlinear oscitiations.

IR M e =




L

|
Two approaches are available for the application of the method of averaging. i
The high-frequency components of the equations of motion can be removed Q]
numerically by application of a quadrature around an appropriate formulation -,
of the high-precision equations of motion. This procedure is known as the H

numerical averaging approach. If the perturbing forces are conservative, the

)

equations of motion can be expressed using Lagrange's formulation, and the

-

averaging quadrature can be performed analytically. Under certain assump-

————

tions.l this method produces the same result as that obtained by inspection.

This semianalvtical procedure of numerically integrating the analvtically aver-

oy
PO

aged equations of motion is referred to as the analytical averaging approach.

-

e

Qe

Pr—

l'l‘hc assumptions arise when either the Greeawich Hour Angle, i.e., the Earth's

menar
=
X 4

rolation, o the fast variable of the disturbing third body appear in the pertur-

bation models. Specifically, these quantities are assumed to be completely P
independent of the satellite fast variable, both explicitly and implicitly through z ’ '
m "u‘eo !
-
1-6
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1.2 THE NUMERICAL AVERAGING APPROACH

Recently, the numertest avervaging method has been successfully ggglied to the

artificial aatellite problem (References 4, 5, and 7). This hc‘gniquc i® partic-
ulavty flexible in that it can be applie® to any pertarbation which can be determ-
inistically modeled. 1t is also quite attractige because of the ease with which

Gifferent element sets can be accommodated (Refeewnce %) and because of the

L e A ik W A A

f l‘ case of modifying the first-order assumption (Refermsnces 5 and @, Numerical
+
\ averaging is also appealing tweause the implementation of the procedure seems
t}ig . to be rather straightferward. \
1 However, the implementation, and more importantlv, the proper use of nuneri- r
'
| 1 cal (as well as analvtical) averaging techniques depend on the understanding of
HEEe
Qi several basic concepts, many of which ave addressed in this veport and in Ref-
r L eroaces 4 oand 9. Furthermore, Early (Reference 10V demonstrated that a 4
Q{ straightforward application of the nwmerical averaging technique is not well '
b : surted to cases where the weturbing foree variwes by several orders of magi- é ’
bkl over o short are in the orbit while remaining essentially neghgible outside g I .
| “ that interval, B
| 1 \
\ . Notwithstamiing, numerical averaging kas been shown (Retevence 5 to be an §
; L effective procedure for generating the long-period amd secular motion of a satel- %
‘ ’ lite for s w i varwty of eases and to le comeidsrably more efficient tha the g
~ high-precision techmques.  Comarquenely, the numerical averagmg agproach é
U has beem used cither whollv (Re&wences 4 aml 5) or m part (References 11, 12, i

13, N4, and 18) in the dwewlopment of several atewaged orbit genceraar programs.




1.3 Tnf ANALYTICAL AVERAGING APPROACH

The method of analytical averaging is attractive because it is not only signifi-
cantly more computationally efficient than high-precision techaniques but also
is usually an order of magnitude more efficient than numer.cal averaging tech-
niques (Reference 9). This computational advantage is accounted for by the fact
that the analytically averaged perturbation models, although more complex than

the high-precision perturbation models, are evaluated only once per integration

step. The numerical averaging approach r_quires that the high-precision pertur-

bation models be evaluated once at each abscissa of the quadrature. Thus, the
mcthod of numerical averaging requires between 12 and 96 force evaluations to
compute the averaged clement rates (Reference 10). In addition to the greater
computational efficiency, the analytical averaging method offers greater pre-

cision with respect to co~.putation of the element rates and thercfore should be

used wherever poss) (e (Reference 8).

The analytical averaging method has been usced in the d:velopment of several
averaged orbit generator programs (References 11, 12, 13, 14, 15, and 16).
These programs suffer from one or more limitations, however. In particular,
most programs are based on theories formulated in terms of the Keplerian ele-
ments, which produce singularities in the equations of motion for vanishing
cccentricities or inclinations.] Dallas and Khan (Reference 14) modified the
element set to remove the small eccentricity problem; however, the small in-
clination problem remains. The Earth Satellite Mission Analysis Program
(KESMAP) initiated by Cefola (Reference 11) is formulated in a completely non-
singular clement sct but is severely restricted in its perturbation models as

are the programs described in Reference 15 and 16.

1
This is, of course, not peculiar to the averaging method but rather to the form
of the high-piecision equations of motion.
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The program developed by Wagnor (Roference 13) s basod on general oxpross-
fons for the analytically avoraged porturbation models doveloped by Kaula (Ref-
ovences 17 and 18) which ave formulated in torms of singular Keplerian elements.
Cook (Referenco 16) implementod Kaula's porturbation models using Allan's re-
cursive algorithm for the inclination functions and a recursive algorithm for the
Hanson coofficionts based on the recursive proporitos of legendro polynomials.
Unfortunately, Cook's program is based on the singular Keplorian eloment set,

and the nonsphorical gravitational potential is rostrictod to the zonal harmonices.

Examplos of computer-gonervated, explicit analytically avoraged perturbation
models are given by Sridhavan and Renarvd (Roference 19 for the long-period,
disturbing thivd-body model using the potontially singular Koplervian olemonts
and by Collins (Reforence 20) for a restricted 2:1 vesonant geopotential model

using the nonsingular oquinoctial elements.
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1.4 RECENT DEVELOPMENTS IN ANALYTICAL AVERAGING THEORY

Very recently, several authors have investigated general, analyvtically averagoed
perturbation models for the third-body aad noaspherical gravitational perturba-
tions in sermas of nonsingular olament sete. Cefola and Broucke (Referonce 21)
developed recursively fornulated modoels for the nonresonant thivrd-body and zonal
harmonic porturbatioas based on the equinoctial elensents.  The devolopment of
the zonal harmonic model is similar to that of Cook's model, with the exception
that the inclination function is developed in terms of associated Lagendre poly-
nomials and their derivatives and cortain complex polynomials. Cefola's third-
body model ig developod in terms of the direction cosines of the disturbing third-
body position vector, which proves computationally efficient but is limited to
nonresonant cases. Cefola outlined an extension of his zonal harmonic model to
include tho nonresonant tesseral harmonic terms (Reforence 22) and later com-
pleted and extended the model #0 include resonant phenomena (R&ference 23).
Hacaglia (Reference 24) reformulated Kaula's perturbation models (using Allan's
inclination function) in a nonsingular oloment set and provided a set of rocursive
algorithms for computational purposes. Finally, Nacozy and Dallas (Reference 26)
also reformulated the Kaula goopotontial model (using Allan's inclination function)

in torms of a nonsingular element set. No recursive algorvithms were provided,

The relatively simple recursive algovithms of Cook, Cefola, and Giacaglia ave
appealing in view of the alternative of evaluating the complicated polynomials
found in the work of Nacozy and Dallas. However, the brute-force implementa-
tion of recursive algovithms can contribute to computational inetficiencey and
can possibly introduce artificial singulavities (not in the equations of motion,
but in the model evaluation). To ingure against this possibility, careful consid-
eration must be given to the ordering of the terms m the models such that the
recursion formulr  procoed in the proper diroction to avoid small divisors and

the amount of recomputation and storage requirements are minimized.! The

1(efola has considerod the question of the efficient implementation of his theory
(Roforence 21), N
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storing nothing or the camputstion of all distinct quastities opce and stoving of

l slteramgives of computation amd recomputation of all quantitics as needed while
n each ave coslly ig y'ma of mackim: prooessing tinw aad sterage, vespectively.
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1.6 SUMMARY

{ This roport ix an outgrowth of a eries of tank assignments with the objoative of
v implemonting in the Gokdard Trajectory Intermination System (GTDS) Resvarch
, amt evelopment (R&1) version a set of recursively formulated, first-ovder an-
K

alytically avevaged cquations of motion for an artificial satellite porturhed by

* nowresonant thivd-bady amd nonspherical gravitationsl perturbations. This ann-
tytical averaging capabitity enlances the GTDHS awmerical avoraging capability

-9 (Feference 4) and provides for optimat averaged perturbatioa models for wach
pecific tvm of perturbation (with the possible excoption of thivd-bady resonamce

“ casen, which wete not considered),  Partial results obtained for some of the op-

1 tamal avoraged perturbation madels (4 G'THS have twen presented in Refovenoe 9.

) Ceofola's averaged porturbation madels ave sdopted for the nonresounnt thivd-

body and zonal harmonic wrturbations.  The tesseral harmonic mode! was
developed using the approach outlined by Cefola in Reference 22, ‘The madels
dwveloped were generalized to handie retrograsd® as well a direct equinoctial

vlanments (soe Appekdix A),

As part o this investigationy a faivly detsiled comparison of the theovies of
Cofola aad Gincaglia was parformed.  Briofly stated, the theorios were foud

to tw haxically cquivalent, Minor ditferences i the theories include diffeveuat

{

moas ingular etoment sets and ditforent computational procedures for the ineli-
nation fwaction,  Argumeats can lw made concerning the relative advantages

and dizndvantages of thesoe nousingular element aets, but i regavd to the removat
of the singulavities from the oquations of motion, both are gcecoptable, Giacaglia

N computes the eative inctination function vrecursively, vequiring 8 wmore compli-

catdd recursion telation with move back values of the function. (etoln uses
tecursion {ormulas tor several (quantitivs comprising the inctination function,
T wecursion relations are stmpler, requiriug fewer back valw's, but more

recursion formulas e sawded,

-1
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Regarding the implementation in the GTDS R&D version of the resonant tesseral
harmonie model, it was felt that this capabitity should be very tlexible with re-
spect to the specific reagonant harmonic terms used. The existence of a resonance
dictetes which terms in the potential expansion ave significant to the leng-period
motion. Knoe _.ge of the common characteristicg of these terms and the proper
use of the recursive algorithms would have provided a means for further optimi-
zation of this model. Howaver, the procedure would have been automatic, with
the program expccting a certain set of terms.  Therefore, for the purposes of

flexibility and at some additional computational costs, the contributions from cach

spherical harmonic term are computed entirely independently from all other terms,

Dwe to the extensive new softwave for the analytical averaging capability as well
as to the extensive modifications required to the previously implemented averag-
ing software (particularly the input processor and initialization procedures and
the attendant added complexity of executing the GTDS R&D averaging capability),
it was decided that a systom description and user's guide for the GTDS R&D aver-
aging capability would be issued under a separate cover. In addition, a document
extending the numerical results beyvond those presented in Reference 9 is also in
preparation. Thig document will discuss the computational costs in terms of
machine processing time, the accuracy of the analvtical averaging methods, and
the procedwre amnd algorithmas used to develop an automatic truneation capability

to further eptimize the perturbation models for each parvticular case,

The current report comsists of two volumes., ‘The theory of the wmethod of aver-
aging is discussed in Volume I, Volume 1 presents the explicit development of

a semianalytical artificial satellite theory based on the method of averaging.
Volume | presents a faivly comaprehensive discussion of the application of the
gopsralived method of averaging to the artificial satellite problem and the result-

ing formulation of the averaged cquatious of motion. la Nection 2, a discussion

1The capability to automatically seleet the resomant terms was implemented in the
GTDS R&D version. However, no special relationship among them is assumed.
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of the Variation of Parameters (VOP) formulation of the equations of motion,
wpon which the methad of averaging is based, is presented. Section 3 discueses
ths spplication of the method of averaging to the VOP equations of motion. The
criterion for the selection of short-period terms is discussed in Sactiom 3.1,
anx the generalized method of averaging is applied to the VOP equations for the
csse of a single perturbing function in Section 3.2. A discussion of the application
of the method of averaging to the case of two or more perturbing functions is
presented in Section 3.3, followed by a description of the modificatiom required
for the application of the method of sveraging to cases involving resonance phe-
nomena in Section 3.4. Next, Section 3.5 addresses the application of higher
order averaging theories. Finally, a discussion of the first-order short-period
variations ia the elements and their application 80 ogculating-to-niean and mean-

to-osculating element conversions is given in Section 4.

Volume 1l presents the mathematical formulation of the monspherical gravitational
and nonresonant third-body models required for the first-order averaged equations
of motion. In this volume, the nonspherical gravitational potential is developed

in the nonsingular equinoctial element set, aad the zonal harmonic model, the
combined zonal and nonresonant tesgeral harmonic model, and the resonant tes-
seral harmonic model are isolated. The nonresonant third-body disturbiog func-
tion is also developed in equinoctial elements and in the direction cosives of the
third body. All models are presented in what is considered to be an optimal form,
taking into account the migimisation of the combined computational and storage
costs while avoiding computational singularities. It is this final form of the

models that was implemented in the GTDS R&D version.
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" - serves the purpose of explating the basice principles of the method and provides
{!
B a logical foundation for the form of the VOP equations used in this investigation,
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SECTION 2 - THE VARIATION OF PARAMETERS (VOP) FQUATIONS

Classically, the Varviation of Parameters (VOP) formulation of the equatic..a of

motion was used to investigate the long-period and secular motion of the planets,

|~

! The VOP formulation was introduced by Euler while investigating the mutual

. N kY N

j H pertuebations of Jypiter and Saturn and was later generalized and completed by
Lagrange (Reference 26). Since the primary objective of the curvent investiga-

tion is the development of an efficient orbit generation method for the prediction

 E——

of the long-period and secular motion of artificial satellites, the VOP formula-

——

tion was used.

{ : In this section, a devivation of the basic VOP equations is presented in an attempt
l - to provide some background information to the reader who is not alveady fumiliav
i

with the method.  Although the devivation presented is not the most elegant, it

b o

L

Gl eEm el &3 T3 O =




o

Rt ass ol SANBEE

sy

L4 1

A
N ot [l 3
- D e i e e

2.1 PRINCIPLES OF THE VOP FORMULATION

The VOP formulation of the equations of motion for a perturbed dynamical
system requires that the solution for the corresponding unperturbed system be
known., The unperturbed dynamical system associated with the artificial satel-
lite problem is the classical two~problem of celestial mechanics. As a starting
point in the development of the VOP formulation, the differential equation of

Newton describing the perturbed motion of a satellite relative to the central body

is considered, i.e.,

i
. [J

¥ ek (mamg) ;%— = QUF¥,t) (2-1)

where T and r denote the satellite position vector and its magnitude, T is the
velocity vector, k is the Gaussian constant, m and mg are the masses of the
central body and satellite, respectively, '(3 is the perturbing acceleration vector
caused by conservative and/or nonconservative perturbing forces, and t is the

time. For mg<« m, the satellite mass can be neglected.

For the unperturbed problem where '(3 = 3, Equation (2-1) reduces to

- T -
2 \m — =0 (2-2)
r

A solutfon of this system of equations requires six constants of integration.
These constants are democed by a; (where i =1,2,...,6) or by the vector @.
The constants are identically the components of the initial position and velocity
veotors or any set of six independent functions of the initial position and veloeity.
The solution of Equation (2-2) is denoted by the vector function 30(“- t). The
method used to obtain this solution is discussed in References 27 and 28. The
solution ?0 describes the motion of a point on an ellipse at a particular spatial
orientation with the central body located at one of the foci.
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In the VOP formulation, the perturbed two-body problem represented by Equa-
tion (2-1) is assumed to possess a solution ¢ of the same form as the function
30 with the single exception that the constants of the unperturbed motion, a5,

vary with time. Solving Equations (2-1) them reduces to determining this time

dependence.
The VOP equations of motion consist of a set of six first-order differential equa-

tions as foi:..ws:

da,
T~ GG, t) k- 1,2,000,6)  (2-3)

where the constants of the unperturbed motion, referred to as elements, ave
treated as time-dependent parameters. This system of cquations can be obtained

directly by transformation of Equations (2-1). FExpressing the three coordinate
results ia the three equations

Xy = ﬂ (K.,t) (i-1,2, (2-4

involving 2ix unknowns ay . Consequently, three arbitrary relations or constrainta
may be imposed on the six elements. These relations may be specified implicitly

and are usually chosen guch that the following equations ave satisfied:

d of:
ML @ 1,2, @-5)

®*® T3t

to
1
-

s~y
m variables in Equations (2-1) formally in terms of the six elements and the time
L




which requires that

é

of: da

%% . o -
Z da, at 0 (i=142,3) (2-6)
ked

The metivation for this particular choice is discussed below.

The implieit relations between the position and velocity and the six unknowns a;
specified by Equations (2-4) and (2-5) will be used to transform Equation (2-1) into
Equations (2-3). Differentiating Equations (2-5) with respect to the time yields

o a s (
d”x; 3% : : %%  da,
-1 + _— (i=1,2,3) (2-7)

otd da, Ot dt
kel

Subatituting the right-hand sides of Equations (2-7), (2-5), and (2-4) into Equa-
tions (2-1) yields the following three first-order differential equations in the six

unknowns a ¢

3

2%, . 2%  da, £

ata aak dt dt + K'm i“ LIEY = Qi (;p TR
e 73

kal s
Js

i=-1,2,3; §j=1,2,3)

Equations (2-6) provide the three other first-order differential equations required

to determine the system.

The function f;, representing the ith compounent of the position vector, is deter-
mined from the formulas for elliptic (unperturbed) motion, i.e., through 30 R
which relate an instantaneous position to a set of instantaneous elements (in fact,

infinitely many). It is not imm ‘djately obvious from Equation (2-4) alone that the
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perturbed velocity vector can be related to the same set of instantameous elements
through these formulas. However, Equation (2-5) indicates that the velocity com-
poneuts are determined by differentisting the position functions, {;. while holding
the olaments constant, which {s exactly the requirenient for unpesrfurbed motion,
As a result, at any time t, the perturbed elements always correspond to a set of
unperturbed elements. Such elements are referred to as osculating elements,
The three constraints imposed on the elements by Equations (2-5) are not the only
set possible, but they are the only set that allow both positioa and velocity to be
related to these perturbed elements through the formulas for elliptic motion,

In Equations (2-3), five elements can be chosen such that they completely specify
the osculating ellipse in space. The sixth element, a;, in conjunction with the
time t gpeoifies the position of the object on the osculating ellipse at time ¢,

The tunction Gk(ﬁ, t) represents the time rate of change of the ith osculating ele-
ment causcd by the perturbing force. Ia most cases, the perturbations are small
compared with the central force, and, therefore, the magnitude of the function
Gy is small. Consequently, in most problems the elements A, are slowly vary-
ing.

FFor conservative parturbing forces, the osculating clement rates can be repre-
sented in terms of the partial derivatives of a disturbing funaction. The disturbing

function is the negative of the potential function, honece the restriciion to consevv-

ative perturbing forces. To obtain a formulation depeadent only ou the elements,
the disturbing fumction is developed in terms of the olomeats through a formal
Fourier series expansion. Also, the Fourier series representation perwmite
isolgtion of SpeCiEiL‘ frequeacies in the motion by inspection, 1f the series expan-
sion is developed literally, Equations (2-3) can be integzated term by term uasing
the method of successive approximations to obtatn an asalytical approximation

to the solution (iteference 2).  This approach {s kaown as the method of geseral

porturbatiens,
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Under the category of special perturbation methods, several numerical tech-

niques have been developed for evaluating the osculating element rates given by
Equations (2-3). A particular solution for these equations is then generated
using a numerical integration procedure. There are essentially two formula-
tions of the special perturbation technique associated wtih the VOP formulation
of the equations of motion. One formulation, associated with the name of Gauss,
uses closed form expressions for the osculating element rates, i.e., the func-
tions Gy are formulated in terms of the components of the acceleration. The
other formulation is based on a Fourier series expansion for the disturbing
function as used in the general perturbation method except that the coefficients
are generated by some sumerical scheme.
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2.2 THE GAUSSIAN VOP EQUATIONS

This particular form of the VO equations is esmily obtalpl ss Follows, &'irst,

Equation (2-5) is substituted iMo Equataens (2-8) to vield ' :

= =

‘ *
M E; Ba; . ¢;
33 ) it K ———— = Q; (i°1,2,3) (2-9)

i

]t‘ ¥

f—-‘a—-
4
[

Clearly, the corresponding eqguation for the ungbressréw @wmorion is

— =

a
: $
3 & > him

an* 3 23
(E+)
IR}

Subtracting Equation (2-10) from gguatien (2-9) giges

n
(4]

d - 1,2,3) (2-10)

o~
i

—— MR R
r.s—-

: s

a 2, . /
— a4 . . a 1,2, 2-1h ’

’ a°‘ h Q \ (

{

' “X

{J

U Multiplying both sides of Equations (2-11) by ls-j ‘.i and sgmming over the index

i vields

37
36 3; » N :
3 o f
) [ .
e R S S 2 o, L2006 (2-12)
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(3=1,2,.4.,6) (2-13)

3
Y a8
‘ bak B )‘k

[ER%

where § i,k is the classical Kronecker delta function since the elements a, are

mutually independent. Consequently, Equation (2-12) takes the form

[ 3 b
Z Sjak a’k Z a—— i
s}

ksl

(2-14)

or, more simply,

G=1,2,...,6) (2-15)

This result is known as the Gaussian form of the VOP equations of motion.

The right-hand side of these equations can also be formulated in cylindrical
coordinates where the radial, transverse, and normal components of the accel-
eration are used. This particular form of the equations can be found in most
celestial mechanics references (e.g., Reference 29). The Gaussian formulation
is particularly attractive becuase it is appropriate for both conservative and
nonconservative perturbations. However, because most accelerations are Lk ‘ot
formulated in terms of position or position and velocity rather than as a Fourier
series expansion, periodic phenomena cannot be isolated from the acceleration
model by selecting the appropriate terms by inspection. Therefore, a numerical

procedure must be used for isolating specific frequencies in the motion.
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Because of the flexibility and relative ease of implementation, the Gaussian for-
mulation has been used in the development of numerical first-order averaging
procedures (References 4, 5, 11, 12, 13, and 14). This formulation has the
disadvantage that conversions from the clements to position and velocity must
be applicd whenever the element rates are evaluated, i.e., at every integration
step. In the Lagrangian formulation, this particular disadvantage is avoided at

the possible expense of the closed-form expressions for the equations ol motion.
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2,5 THE LAGRANGE PLANETARY EQUATIONS

The derivation of the Lagrange VOT' equations of motion (referred to as the

Lagrange Planetary Equations) is identical to the Gaussian formulation through
Equations (2-11), with the exception that the perturbing function or acceleration
component, Q,, is restricted to depend only on the position and can then be ex-

pressed as the gradient of the disturbing function, R(x1 » Xoy X3), i.e.,

dR
Q; = ™ (i=1,2,3) (2-16)
Equations (2~11) then take the form
6 .
()3\; . R
—_ Q 3 — i - : -
o k Ax; (i-1,2,3) (2-17)

Multiplving Equation (2-17) by Bxi/ aaj and summing over i yields

3 & . 3 Q
a — = 9&g e 0y -
: : oa A0, k a; ox, 9% J

i3l Wl iei

Similarly, muitiplying Equation (2-6) by a:'(i/ aaj and summing over i vields

3 )
bk; bx-, .
3 b, &% * O (2-19)
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Subtracting Equation (2-19) from Equations (2-18) yields

9
. 2R |
z [a,j,a.k]o..k s -b;- (3=1,2,...,6) (2-20)
k=L 4
where
[
[ ] Ox;, d%; Ox; dx; y_n1
R Y B da; da,  da; o, (2-21)

i3l

4s called the Lagrange Bracket.

Although there are a total of 36 Lagrange Brackets required for the complete set
of equations specified by Equation (2-20), at most only fifteen must be determined

because

[ai205] = 0 (2-22a)

and

['*3: °‘k] .- [°~m 0«3] (2-22b)

These conditions follow from inspection of the definition given by Equations (2-21),
It should be pointed out thas the Lagrange Brackets depend only on the formulas

for elliptic motion because

dx, o Ox; d Of;
— = 5~ ad T % o— =
30, - duw 3o, - bay Bt
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The fifteen necessary Lagrange Brackets required for Equations (2-20) can be
evaluated explicitly in terms of the elements and the system of equations inverted
to yield ak . Aa explanation of the evaluation of these quantities is presented in
Reference 29,

An alternate derivation of the Lagrange Planetary Equations can be obtained with
the aid of the following relation given by Broucke (Reference 30):

a&k b‘;
o (“‘" %) 3 (2-23)

st

where the quantity (aj, ak) is the well-known Poisson bracket and is defined in
Cartesian coordinates by

3
da, da; ba.k da;
(ay,q;) ° Z<5;'\'3';: Y o.‘ (2-24)
ied

The Poisson Brackets also share the properites of the Lagrange Brackets, i.e.,

(ay,2,) =0 (2-252)

(ay,05) = - (a5, ax) (2-25b)

Equation (2-33) is immediately verified by direct substitution of the Poisson
Bracket definition.
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Expressing the Gaussian VOP equations (Equations (2-15)) in terms of the dis-
turbing function yields

3

% oRrR ORIGINAL PA

1 43,2,...,6) (2-26

Z 5%,  OF Poor qualiry ' 0% 47
«}

Substituting the expression for da, /3x; in Equation (2-23) into Equation (2-26)
iromediately yields

OR en‘
(o.“,o.) (k=1,2,...,6) (2-27)

b‘\ OQ.‘
J't 14
or gimply
3
0 ( oR k=1,2 6 (2-28
Ay * - &y, ;) >a, k=1,2,...,6) (2-28)
i

Equations (2-28) are the Poisson Bracket representation of the Lagrauge Plane-

tary Equations.

The relationship .. [ii-en the Lagrange anl Poisson brackets is immediately

obtained by substituting Equation (2-28) into Equation (2-20), The result is

¢ 6
OR R
- [M,"»\] (o, ﬁﬂ ‘o'a‘; Yt (2-29)
hei i '
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which requires the condition

6

Z ["'h“k](‘h%) . 8 (2-30)

Keg

(Equation (2-25) was used to remove the negative sign in Equation (2-30).)

The particular VOP formulation adopted for this report is a modified version of
Lagrange's Planetary Equations and is given by

6

e N e .y R

3t (a..,a,);‘)‘—1 (i=1,2,...,5) (2-31a)
it

6
alL R
—t— E 3 - . o -
n n Z (1,0 e (2-31b)
- (1
=4
where n is the mean motion and ag DOW denotes the variable £ under the summa-

tion. The variable 4 , referred to variously as the fast variable or the rapidly

rotating phase, is not a true slowly varying element but is a linear combination

of the time with an element such that

A = nt (1 3 (2-32)

The parameter £ measures the angular distance of the satellite from some
departure point in the orbit. This modification, which was made by Tisserand
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(Reference 31), is necessary to avoid the presence of mixed secular terms in

the equations of motion. A mixed secular term has the form
n
t cosmi
n .
t sinmi

and quickly degrades the solution as time t increases. The appearance of such
terms is not inhereut to the problem but to the formulation of the problem. The
mean motion, n, entera into Equations (2-31) through Equation (2-32)., Use of
the variable &4 appears to have significantly changed the form of the Lagrange
Planctary Equations. However, the original form of the equations given by
Equations (2-28) is casily recovered by modifving the disturbing function with
the addition of the negative of the total cnergy to the original disturbing function,
i.e., if the semimajor axis is denoted by a, then

n

t
Re —
R=Re &

Equations (2-31) can then be expressed as

‘
da, Z OR'
Tl (ai, a)) Y (2-33)

oL

where 2 is understood to vepresent the variable 4 . A more complete discussion
of this question is presented by Plummer (Reference 32). This refinement is not

aecessary for the purpose of this investigation and, accordingly, will not be uscd.
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2.4 DISCUSSION OF ORBITAL ELEMENT SETS

The preceding discussion of the VOP equations has made numerous rcferences
to the ""elements' or "osculating elements." The question of which elament sct
to use has not been addressed, and, in fact, a general discussion of the VOP
formulation need not be coneerned with any specific element get. However, the

application of the VOP equations does require the selection of a set of elements.

There are several well-known element sets, the best known of which is the set
of cl. iical or Keplerian elements. The VOP equations formulated in Keplerian
elements contain the eccentricity, e, and the sine of the inclination as divisors
and therefore are singular for vanishing eccentricity and/or inclination. There
are several nonsingular element sets available, and the choice of a particular
set is arbitrary insofar as removing the singularities from the equations of
motion. However, some of these sets can present a slight computational advan-
tage over other sets when converting from elements to position and velocity.

For other applications, such as differential correction and error analysis pro-
oedures, the choice of the element set may no longer be quite so artibrary.
According to Broucke and Cefola (Reference 33), the nonsingular set of elements,
which are called equinoctial elements, can possess marked computational advan-

tages over other nonsingular element sets.

The equinoctial element set, a = (a, h, k, p, q, A), is used in this investigation.

It is defined in terms of the Keplerian elements by the following:

e sn(w+I0)

a e cos(W+IN)
tan® (1/2) sin )
tan® (i/2) eos U
Lre+Id

> H v x 5 P
s
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where 1 is the retrograde factor which takes on the values

(for 0< 1% (r/2))
(for (w/2)< 1<)

A more complete discussion of this element set, including the Lagrange and
Poisson brackets and the conversion to position and velocily, is presented in

Appendix A.

The VOP equativns expressed in equinoctial elements take the form

MYy, XK [(R R
L+8 A 3AB pép qéq,

R hC / &R
1+8 O\ ane \P 3p TV 3g

AR AR TC* OR
h + +
Ak A\

—_— ] = e——
Ok o)

OR oR TC* 2R
ANB Op
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an 99

(2-34a)

(2-34Db)

(2-34c)

(2-344d)

(2-34e)




dA 2 oR 8 OR oR

® T "TAT R A(L«B)(hﬁ*kﬁ>

(2-340)

. c(AR*a_a
a8 \P 3 "5

where
A= na®

B = Vi-nd-kd

C= L+p*s ‘1

The disturbing functiong presented in Volume II of this report arc better expressed
in terms of the direction cosines («a, 8, ¥ ) with respect to the equinoctial ref-
erence frame ('f\. 3, Q) of either the equatorial Z axis or the third-body position
vector, rather than in terms of the equinoctial elements p and q. Consequently,

expressions of the form

_b_g___.eg_‘b_u‘*ék bﬁ’éaat
dp do dp 4P dp Y Jp

3R R da R OB MR AV
23 " 333 "% & T

will be used to modify Equations (2-34) in order to accommodate the particular

form of the disturbing functions. The following results, presented here without
proof, are demonstrated in Volume II:

dor a
3 - TC (¢B1+ ¥) (2-352)
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(2-35b)

(2-35¢)
(2-35d)
(2-35¢€)

. (2-35§)

(2-36a)

(2-36b)

).

_. Y




. -

da
a

dh

at

dk

dt

dp

dt

4

dt

2|e

. L3 h8
A8 (PR'O' N XQR',T) ) AZ[QG)

(pRaye - IqRp¢) - e 3

t
Rn® %o (pRyyv - IqRyy)

where C is defined as before. Substituting these expressions into Equations (2-34)
yields the final form of the VOP equations of motion used in the current investiga-
Hon, i.e,,

(2=-38a)

{2~36b)

(2-38¢;

(2-384)

(2-38e)

i2+-38M)
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where A, B, and C arw defined as ik EQueMon (2-34) and

R on oR
5y * “'5;'3;"

for any two variables x and y .

It should be pointed out that a considerable simplification oceurs for the wm-
resonant third-body and zomal harmonic perturbgséons whene

Rowe R,

. 8 3

6‘.
This simplification was first reported ia Eqnatiane (5-57) of Referengp@1 and
will be demonstrated in Volume II of this repert.
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SECTION 3 - THE AVERAGED VOP EQUATIONS OF MOTION

Classically, in the investigation of the long-period and secular motion of the
planets, the Lagrangian Variation of Parameters (VOP) equations (known as the
Lagrangian Planetary Equations) were expanded in a literal Fourier series and,

with the proper assumptions, the terms which contribute to the long-period and

secular motion could be easily isolated by inspection. This technique produces
excellent results when the perturbations are small, and it has been used exten-

sively to investigate the planetary motions over long time intervals.

Alternatively, the long-period and secular contributions to the motion can be

systematically isolated by applying the method of averaging to the VOP equations

of motion to eliminate the short-period contributions. The solution of the result-

‘ng system of averaged equations is a set of parameters, usually referred to as
meanl elements, that describe the long-period and secular deviations of the

perturbed dynam:cal system {from the unperturbed system.

The technique of eliminating the short-period terms from the equations of motion

£ B30 0 0O B0 0 B3 BN B B

was without a mathematically rigorous foundation until the relatively recent work

b of Krylov and Eogoliubov (Reference 6) on asymptotic methods for nonlinear
oscillations. The theory of the method of averaging is based on Poincare's

theory of asymptotic expansions (Reference 34) and the introduction by Krylov

and Bogoliubov of the concept of a near-identity transformation. The theory hcs

been extended most notably by Mitmpo}sky (Reference 35).

Further elaboration and discussion of the theory has been contributed by several
authors. Kruskal (Reference 36) remarked on the possibility of a recursively

formulated general inversiun of the near-identity transformation. Stern

1The mean elements are defined operationally as the solution to the averaged
equations of motion. Consequently, the exact definition of a particular set of
mean elements depends on the interval over which the equations of motion are
averaged. This is discussed in more depth in Section 3.1.5.
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(Reference 37) developed this recursive algorithm cxplicitly.] Kyner (Refer-
ence 38) and J. A. Morrison (Reference 39) have shown the Von Zeipel trans-
formation methnd to be a spocial case of the generalized method of averaging,
at loast to second order, thus establishing a direct link to the methods used in
developing analytical satollite theories.” F. Morrison (Reference -10) has
presented a lucid discussion of the first-order application of the method, A
discussion of the generalized method of averaging is also given by Nayteh (Ref-

erence 41).

Although the discussion in this scetion is equally valid for many «ther dynamical
systems, the primary objective of this report is the application of the method of
averaging to the equations of motion for an artificial satellite. Conscquently,
the concepts of short and long period are developed in this context. Also, since
the method of averaging can be applioed to either the Gaussian (Equation (2-15))
or Lagrangian (Equation (2-31)) formulation of the VOP cquations, the general

expression

doy

at = G.F; (E,Q)

(- 1,2,...,0) (3-1a)

dt _
ot ° ")+ eR(@,p) (A= 1b)

- . ¥ . v : . :
(where a coasists of the five eloments ") is used in the following discussion,

lThis reocursive algorithm is a gencral expression relating the jth-order term
in the neav-ide tity transformation to various combinations of the lower ovder
torms in the transformation with lower order contributions to the mean element
rates, This recursive algorithm is quito distinet from the vecursively formu-
lated first-order theory prosonted in Volume 11 of this report.

An analytical satellite theory can be doveloped using successive applications of
the mothod of averaging to remove first the short-period terms and then the
long-period terms,
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In this section, the generalized method of averaging is applied to the VOP equa-
tions of motion to obtain systematically the equations for the long-period and
secular motion. A discussion of the criteria for the selection of short-period
terms is presented in Section 3.1, and the averaged cquations of motion for a
s* rle perturbing function are derived in Section 3.2. Section 3.3 extends the

application of thc method of averaging to cases with multiple perturbing func-
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tions. Next, in Section 3.4, the modifications required to extend the application

of the method of averaging in the case of resonance phenomena is presented.
i Finally, the application of higher order averaging theories is discussed in Sec-
} U tion 3.5.
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3.1 CRITERIA FOR SELECTING SHORT-PERIOD TERMS

The criteria for distinguishing short-period terms are, in general, subjective.
The shortest period of significanee in the equations of motion effectively con-
strains the integration step size. For efficient computation, it is desirable to
maximize this step size while retaining the essential character of the motion
over an extended interval of time, This is the primary consideration in the

selection of appropriate criteria for distinguishing short-period phenomena.

To illustrate this point, the following simple differential equation is considered:

a = Cjeos [j(l-l.o)]

In general, the minimum number of function evaluations required to integrate

a function of this type over one period is four. The cosine function has three
zeroes in the interval of one period. In view of the Fundamental Theorem of
Algebra, any approximating polynomial which is valid over one complete period
must be of at least third degree. Consequently, the function must be ealuated
at four points to determine the coefficients of this third-degree approximating
polynomial, or, equivalently, the function and its first three derivatives can be
evaluated at a single point, requiring four function evaluations. This does not
mean that four function evaluations per period provide the best representation
of the element rate in the example, but only that this is the minimum number of
function evaluation= per period required to obtain the gross behavior of the real
solution. The accurate integration of such a periodic function using arbitrary,
equally spaced abscissae would probably require six, and more likely, eight
function evaluations per period, requiring a corresponding number of integra-

tion steps.

A useful criterion for the selection of long-period terms is provided by careful

examination of the frequencies in the artificial satellite problem,
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3.1.1 Satellite-Dependent Froguencies

The perturbing functions Fi(?f, 4) in Lquations (3-1) are assumed to be 2 peri-
odic in the sateltite tast variable, £ . Some of the slow variables are angular
Quantities (heplervian elements) or functions of angular quantities (equinoctial I

elements) that produce fundamental periods in the motion of order o h. i

i
I
I
Y“
:HL
[

v %

P; denotes the fundamental period produced by one of the slowly varyving angles
and if the fundamental period produced by the fast variable L is 27, then the

fundamental period, P;, satisfies the velation

=

' R g
>
¢ 'Filmax

R

\

(=

If the quantity cl l"i | <« 1, the period P; must be such that P} 21, i.0.,

max
it is much greater than the periods coatributed by terms containing the fast vari-

able 4. In addition, the VOP formulation implicitly assumes that the quantity

€ IFi Im“ is not large. This discussion suggests that terms dependent on the

.
Al
| -

I satellite fast variable £ and all multiples of 4 (i.e., mL, where m 1,2,3,...),

which are of perviod 2 m, be considered to be short periodic as compared with

terms containing the slowly varving angular quantitics. Conscquently, all terms

with periods of the same order of magnitude as the satellite period and all smaller

eriods will be considered to be short period terms.
I

Other variables which can introduce short-period effects also appear in the per-
turbing function. More specifically, the effects on the satellite motion caused
by the fast variable of the disturbing thivd body (i.e., Moon, Sun, ete.) or the
Greenwich Hour Angle in the nousphervical gravitational potential model must be

considered,

3.1.2 Third-Body Effects on the Mation

The presence of the disturbing thivd-body fast vaviable in the cquations of motion
will contribute terms with a fundamental period of approximately 28 days for the

Moon and 1 year for the Sun,  'lither of these can cevtainly be considered to
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produce lnmg-period effects (relative to the satellite pericd) in the motion of the
vast majority of artificial Earth satellites. An infinity of mulitiples of the third-

body fast variable also appear in the third-body model. Such terms will contribute

the periodicities P; to the motion of the satellite where

* P*

P“ * m=1,2,3...)

and where P* is the fundamental period produced by the fast variable of the dis-
turbing body.

Clearly, as n increases, the periods P; decrease; therefore, very high har-
monics in the third-body perturbation model will contribute terms with periods
similar to that of the Earth satellite, thus introducing third-body-dependent
shert-period terms. However, in the absence of resonance, the coefficients of
these high-harmonic terms are very small in magnitude, rendering the contri-
butions of these terms insignificant.l Counsequently, the third-body motion (in
the absence of resonance) contributes significant effects with periods of P*/u,
where n usually remains a small integer. Such periods are, in most cases,

still very long compared with the periods of most Earth satellites.

However, certain classes of satellites (e.g., Interplanetary Monitoring Platform
(IMP) satellites) have orbital periods comparable to the periods of the lower har-
monic lunar terms cited above. For this class of satellites, the lunar effects on
the motion cannct be considered to be long period. However, in the case of a
strong resonance, a long-period component of the motion is introduced. The
period of the resonant or critical term is significantly greater than the period

of the satellite.

1In resonance, the commensurability between the mean motiou of the satellite
and the mean motion of the third body or the Earth's rotation rate causes the
appearance of a small divisor in the coefficient of the critical term, resulting
in a significantly increased magnitude for the coefficient and a corresponding
increase in the contribution of the term.
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3.1.3 Nomspherical Gravitationsl Effects on the Motion

la the case of perturbing effects caused by the nonsphericity of the Earth's gravi-
tational field, the rotation of the Earth, represented as the Groenwich Hour Angle,
@, contributes terms with a fundamental period of 24 hours. These terms can be
considered long period only for close-Earth satellites with periods of at most a
few hours. These "long-period' contributions of 24 hours and fractional multi-
ples thereof should not be grouped with the long-period contributions of several
days or more caused by the third body and the slowly varying elements of the
satellite. Consequently, these aonspherical gravitational contributions will bo

referred to as "medium-~period" contributions.

Multiples of the Greenwich Hour Angle, m8 (n 1,2, ...), appear in the spher-
ical harmonic expansion ropresenting the Earth's gravitational model.  The har-
moaics of moderately high degree (i.e., m - 11, 12, 13, otc.) will contribute
terms with periods of a fow hours or less. kves for close-larth satellites, theso
terms obviously cannot bu considored to be medium period and will be referved

to as ¢-dependent short-period terms.  As in the third-body case, the coefficients
of these high-degroe harmonic terma aro small, orcept in the case of resonance,
and produce little effect on the motion. Consequently, to first order the harmonics
of lower degres can be considered to produce relatively insignificant mediam-
periad effects on close-karth satellites, except in the case of resonance.  For

satellites with larger orbital periods, even the medium-period effects produced

by the low-order wsseral havrmonics must e considersd as short period.

It summary, the key to the designation of short-period and loag-peviod terms is,
of course, the orbital period of the satollite.  All perieds introduced by the satel-
lite fast variable are considered to be short period aad are referved to as sawllite-
dvpendent or 4 -depeadont short-period erms.  The other frequenacies in the
dvaamical aystom, i.e., the frequencies introduced by the third body and by the
rotation of the central bady, must be considored in relation to the natwral frequency
of the satellite.
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3.1.4 Implications for the Application of the Method of Averaging

The method of averaging is best suited to cases where quite distinct groups or
families of frequencies are present. Each of these distinct families is intro-
duced by its own source, and the distinction is found in the specific frequencies
and amplitudes introduced. Occasionally, the higher frequencies in one family
approach the primary frequency in another family and the separate contributions
become more difficult to distinguish. Furthermore, elimination of one of these
families of frequencics by a single application of the method of averaging does

not eliminate the similar frequencies contributed by the other family.,

Additional applications of the averaging procedure are expensive in the numeri-
cal averaging approach or require multiple forms of the analytically averaged
equations of motion necessary for all cases that might be encountered. Also,
multiple applications of the averaging procedure are not always suitable as a
technique for developing a reasonably accurate orbit generator. In contrast to
a second averaging procedure, other means sometimes exist for eliminating

unwanted high frequencies in the motion.

Proper restriction of the tesseral harmonic terms in the nonspherical gravita-
tional model will eliminate the #-dependent short-period terms they introduce
into the motion. Such a restriction has no effect on the secular motion, at least
to first order, since the tesseral harmonics produce no secular contributions to
the motion to first order (Reference 2). In fact, for all nonresonant satellites,
it is recommended that the contribution of all tesseral harmon.c terms be de-

leted from the averaged equations of motion,

1ln the case of exact resonance, two of the families of frequencies are no longer
distinct. The frequencies in one of the families appear to be integral multiples
of the frequencies in the other family. PFurthermore, a single application of
the averaging procedure will remove all frequencies contributed by hoth sources
up to a cut-off frequency specified in the averaging operation. This is discussed
in more detail in Scction 3.4.
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The inclusion of these medium-period and 6-dependent short-period contribu-
tions in the evaluation of the mean element rates severely restricts the step

size in the numerical integration procedure. The medium-period contributions

have periods of 24 hours or less and they necessarily restrict the integration

step size to at most 3 to 4 hours. Although the amplitudes of these terms are
p

.

not negligible, they do not significantly affect the long-term motion as compared

[ —

1

PR E. |

with the long-period and secular contributions of the zonal harmonics. Further-

analytically in the same manner, and at the same time if desired, as the short-
period element variations discussed in Section 4.

If the medium-period effects contributed by the low-order zonal harmonics

are retained in the equations of motion, the €-dependent short-period terms

should still be eliminated as described above, since it is inconsistent to elimi-

T R

nate the satellite-dependent short-period terms while retaining the 8 -dependent

terms with similar periods. This, in effeet, defeats the whole purpose in the

application of the method of averaging by imposing small step sizes in the numer-

|

i

i

i

{

ﬂ more, these medium-period tesseral harmonic contributions can be evaluated

|

{

[

|

[ ical integration procedure, The avbitrary imposition of larger step sizes in this
qase causes these 8-dependent short-period terms to introduce spurious noise

[‘ in the mean element rates and, consequently, in the numerically integrated solu-
tion, This is explained by the fact that the contributions of these short-period

L terms are propagated through the numerical integration as though it were part

of the contribution of a term with a period approximately six to cight times the

step-size interval,

The effects caused by the third body can be considered as exclusively long-period

for the vast majority of artificial satellites, However, for very-long-period

satellites (such as the IMP class with periods of soveral days), the third-body
(lunar) contribution can in no way be considered to be long period and the appli-

cation of the method of averaging must be reevaluated in this light.
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The usual procedure in these cases has been to use Gauss' method of secular
perturbations (Reference 32), which is also referred to as the method of douhle
averaging. In this approach, the method of averaging is applied twice in suc-
cession, once to remove the satellite-dependent frequencies and then again to
remove the third-body-dependent frequencies. While this method does isolate
the secular motion of the satellite quite well, the periodic variations contributed
by the third body to the motion of the satellite may have amplitudes of several
thousands of kilometers. The elimination of such contributions is usually not
suitable for generating a reasonably accurate satellite ephemers... The alter-
native of using a high-precision technique to generate a satellite ephemeris
should be strongly considered in this case, since such large step sizes are

appropriate even for the frequencies in the high-precision case.

A strong resonance in the problem introduces a long-period contribution to the
satellite motion of considerably larger period than either the satellite or lunar
periods. In this instance, a single application of the method of averaging will
isolate these contributions to the motion. However, due to the strong short-
period variations in the problem contributed by the fast variables of the satellite
and third body, a second or higher order averaging theory is probably required.

This is also probably true for the double averaging approach discussed above.

Based on the above discussion, a single application of the method of uveraging

is used in the development of the semianalytical theory presented in this report.
The 6-dependent short-period terms will be climinated by appropriate restric-
tion of the potential model. Although it is not rccommcmlcd,l the theory for the
medium-period contributions to the equations of motion will be developed.  The
third-body theory developed in this report is restricted to nonresonant cases only
and to satellites with periods significantly shorter than the third-body orbital

period,

1
The analytical formulation of the medium-period contributions has not been
implemented in the GTDS R&D version.
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3.1.8 Mean klements

Since the mean clements ave defined operationally as the solution of :he aver-
aged equations of motion, the exact definition of a specifie set of mean elements
depends on the assumptions or constraints imposed in the development of the
averaged equations of motion and on the interval over which the equations of
motion are averaged. In this report, the averaged equations of waoiion are de-
veloped so that the mean elements obtained ave, in principle, co. ivalent to the
mean or average over the averaging interval of the osculating clements. This
is demonstrated in Section 3.2.2. The averaging interval (in the absence of
resonance) is selected to be the satellite period to ensure the elimination of all

satellite-dependent short-period terms.

The dependence of the definition of a particular set of mean elements on the

averaging interval has contributed to some confusion in the communication of

results obtained by different investigators. For many, the term "mean elements’
o AR ]

is immediately associated with the double-primed elements obtained by Brouwer
(Reference 42),  This element set refleets ouly the secular motion of the artifi-

cial satellite. The single-primed clement set obtained by Brouwer in the same

reference reflects both the long-period and secular motion of the satellite. The
single-primed clement set was obtained by the application of an averaging oper-
ation over an interval equal to the period of the satellite and, consequently, is

the analog to the mean elements used in this veport.
g |

In an attempt to eliminate the confusion caused by terminology, several other
names, including single averaged elements and long=-period elements, have been
suggested, However, these terms do not adequately define the elements. This
is because the mean elements are defined wholly by the theory from which they
are obtained and, therefore, no simple naming device can adequately desceribe
them. To ecliminate confusion when comparing separately obtained results, the
corresponding theories must be understood. Therefore, the terminology "mean
clements” will be used in this report, recognizing the inherent ambiguity in the

phrase and also recognizing the lack of a satisfactory alternative.
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3.2 THBE AVERAGED EQUATIONS OF MOTION FOR A SINGLE PERTURBING
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The following set of differential equations is considered:

da;
=— = ¢F (@,

dt i=1,2,...,3) (3-2a)

de _
& = nay +eF(a,0 (3-2b)

where the vector a consists of the five slowly varying elements a; . The near-

idemtity transformation from (a, £) to (?, 1) is assumed to take the form

a
a; » @, + ;éq;d('&,i) » O™ (1-1,2,...,5) 3-3a)
24

n .
L n s ZGJQ‘JG"I) + Ole Yy (3-3b)

J13Y

where the functions i,y are 27 periodic in 2. The barred variables are ref-
erred to as mean clements. The quantity ¢ is assumed to be a small parameter,
e.gey a coefficient in oie of the terms of the spherical harmonic expamsion of

the geopotential model or the ratio of the semimajor axes of the satellite and
third-body orbits in the series expansion of the third-body disturbing function.

The preseice of such a small parameter is basic to the method of averaging.
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Im the application of the method of averaging, the transform of the original system
of equations (Equation (3~2)) (i.e., the cquations of motion for the mean elements)

is assumed to be of the form

dl“ . i | 1%

—d;. 2 Z“ Ai.l(z—) + 0(‘. ) (= 1,2.0-0.5) (3-4a)
it

dl ", .

Tt n@) . Z ¢ A“S @ +» ots™Y (3-4b)

it

so that the rate of change of the mean elements depends only on the slowly vary-

ing mean elements.

Basically, the procedure for obtaining the mean element equations of motion is

to express both sides of Equation (3-2) in terms of the mean elements (!. i).
Equations (3-3) and (3-4) are used to transform the left-hand side of Equation (3-2).
The perturbing function on the right-hand side ig expanded in a Taylor series

about the mean elements and then rearranged as a power series in the small pa-
rameter € . The resulting equations are averaged such that all dependence on

the mean fast variable is eliminated. The final result yields order-by-order
expragsions for the moan element rates, .-\l‘j(ﬁ V, in terms of suitably averaged

functions of the perturbing fumction and its partial derivatives.
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3.2.3 Yormulation of the VOP Equations in Mean Elements

Equations (3-2) are cxpressed in terms of mean elements as folbows. Wissy,
Equation (3-3) is differvatiated, obtaining expressions for the osculating ¢~
ment rates which depend only on the corresponding mean clements and theiv

rates, i.¢.,

&

d; & O oy a4
- G — ‘ ‘. c——-h HO& i 2 3 . "5
m [ w ° Z; Z 3%, i e O™ i 1,2,....5) (3-58)

(13 ) Ned

" '3 < ]
di al . M. di ,
-——— — ‘ __?.;L .__!. “‘ ! -y
P . Prel Z(-. Z 25, dt . O(™) (2-50)

job ael

where 56 is understood to designate 4 under the summation. Substituting
Equations (3-1) into Equations (3-5), thus introducing the functions A; j into

the equations of motion for the osculating elenwnts, results in the expressions

"
da; , M,
rroli ¢! A;.-’(&\ o n(X) Y
T (I 3a20eesgd) (3-Gm)
. .
* - Y e':z".-"" * O(&'“)
Al
me) | T3
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di . M, - '
E = n(@y + Ze’ [:A‘.-’(a) + n(@,) ?{"

-y ,
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The form of these cxpressions can be rearranged to give
N
do.;
— = T AR + (@) M
a s C 2L
=1 (i=1,2,...,5) (3-7a)
Z Z A - RAIY N 4 - O(GN“)
v (@ auk
i ki Ptt «
|
} N
i dl M, ;
i — = - V4
i dt n(a‘].) + AG‘] (ﬁv) + Y'I(Q.Q I
' l isL
t j-l (3'7b)
s nc.: o Nel
i Z Z Ao (B) ———— T + 0(e™)
) kst pst

The summation over p is not performed for j =1 and thus does not contribute to

the first-order terms.
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Next, the perturbing functions on the right-hand side of Equations (3-2) are

expanded via a Taylor series about the mean elements as follows:

o . X ]
F“(-&,l) = "E" < Z —__> F;('G.,I\) (i-1,2,004,6) (3-8)
; n: bmk
Kei o.-%
L=

where Aak = ak-Ek are defined by Equation (3-3). The notation 3 /(aHk)
denotes the operation

S
oa,

Q.k-u.k

and for the sake of conciseness will be used throughout this report. Rearranging

Equation (3-8) as a power series in € yields

N
Fi(8,0) = Ze’ £,(R0) « 0™ i-1,2,...,6 3-9)
°0
where
i‘--\’o('&.,i) = 7/ (1,1) (3-10)

6
: : oF;
‘ ——— v
'g“l(o'\l) ® .’lk‘i aak (3-10b)

kst

&
A - aaFl
'F‘n,a(a» ) - Z (’Zk a aa_ + Z Tl £ 9.7 5'51) (3-10c)

kst
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- oF; L
Ra@b - Z {7‘“35%11 * TZ [(’Zk,;’zj,n’zu’?z.a)

TS R (3-10d)
3AF; L Z M

X — * 3 Mt UL o o
bakaub 3 :‘-l ! ' It b&kaaLM"

cte.  The mean motion, n(ay), is also expanded in a Tayvlor series about the

mean clement, ?1'1 s fet.,

t %\  das ¢
ke0
Rearranging Equation (3-11) as a power sevies in ¢ yvields
N L}
- - t
nlay) '}: e Ny (a,0) + otea™") @=12) o
k0 '
where
Ng(B L) = (B = W @-13a
orY% i
- 3 N
NGLDY = - 7 57 My ENE!
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etc. Substituting Equations (3-7), (3-9), and (3-12) into Equation (3-2) completes
the transformation. Equating tcrms with like powers of ¢ yields the expressions

for the jth-order contribution to the osculating element rates, i.e.,

My on;
= 1, Oliy-p -
A 3(0..) "‘ST"L}' + ) A\‘ 9( ) — 60. = .‘:i\&-l(t‘t) (3-14a)
k=4 p:=l
(i=1,2,...,5)
(i\n\

Z Z Aot )————'I-& = $4,0(&,1) + Ny 3-14b)
Wil peA

3.2.2 Eliminaiica of the Fast Variable Dependence

In order to determine the averaged equations of motion (Equation (3-4)), the func-
tions Al j? which depend only on the slowly varying mean elements, must be
related to the perturbing function or its power serics representation. At first
glance, it appears that this is accomplished in Equations (3-14). However, the
functions n-i,j are as yet undetermined, except that they are constrained to be

27 pericdic in the mean fast variable, L. Fortunately, this condition permits the
climination of the mean fast variable dependence. Integrating both sides of Equa-
tion (3-14) over the mean fast variable, £ . on the interval [0, 271] eliminates
the function ani,j/ai . This procedure of definite integration is referred to as

the averaging operation and is written as

an

= 1 -\ 47
Ha,l)) = — H(E, 1) dlL (3-15)
A
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as follows. If .\Z(?l, £) and ‘1’(?{, £) are two functions (appropriately continuous

|

! '
)

'

‘ Some properties of the averaging operation derived from the above definition are :
i and differentiable) which are 2 periodic in £, then

"WIGINAL, PAGE I8 a1
= C(D CCoon quanrry )

N

-

(aa

< (3, 1) Y(3 Q)> <x(o. 9.)> <Y(a E)\ (3-16b)

<x(o. ) +Y(@ l\> < o D> + <Y(&,i)> (3-16¢)
L i

< ﬁ.i> = < > (3-16d)

| > /. i

: ™ <X(tx >I < k 1,2,...,6) (3-16¢)

where p is any function independent of £, These properties will be used implic-

==

{—:

.Q ,‘ "

It ans 4
=

p|

=

a
0.
bﬁ.k

M

itly throughout the remainder of this section. Because ‘qi j is 2 periodic in £
9

L]
| (n condition of the neav-identity transformation),
M.
<a —1 ) = 0 (3-17)
YR

——— . o a4
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In view of Equation (3-17), the averaging operation also yields

6 L
<ZZ A p@) 72"”’> ZZA\W(M<H”°> (3-18)

) ‘l
ket ¢ ksl p-

As a result, the averaged equations representing the jth-order contribution to

the mean element rates are

oM, )-p (
A"(a.\ 2 \c.,x("«' !.)> ZZ \tp( )< bo.k> (3-192)

(= 1,2,000,0)

A, (a.) «F‘,J l(& 1) +N> Z ZAG p(?u < 2’_;’:9>i (3-19b)

These equations can be simplified by requiving that

aMi.i.
%& a 0 G=1,2,000,6) (3-20)
&x 1 Kk 1,2,...,0)
or, equivalently,
da,; al di
da' z and —_ = — (3-2h
W g dt £ dt
3-20
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which follows from the application of the averaging operation to Equations (3-5).
Consequently, the mean elements (?1,2) represent the long-period and secular

contributions to the osculating elements (a, £) to within a constant, and

<’Z i) (a‘\i)>i « Cij (3-22)

where Ci j is a constant. Equation (3-22) follows from Equations (3-20) and
t4
(3-17), A logical extension of the constraint in Equation (3-20) is to require

that these constants vanish identically, i.e.,

¢..=0 (3-23)

such that

<Q.'\ >l = & and <1. >Z = L (3=24)

Initially, in the development of the averaged equations, the functions ni,j were
quite arbitrary except for the condition of 2 periodicity in L. Equation (3-20)
restricts these functions to contain only short-period, mixed short;-period,:l and
constant terms. Equation (3-23) further restricts these functions to pure and
mixed short-period terms only. That such restricted functions can be deter-

mined is demonstrated below.

Applying the constraint expressed in Equation (3-20), Lquations (3-19) reduce to

(i = 1’2,00',5) (3"25&)

Ay @B = <*""‘(ﬁ“h>:

1A mixed short-period term is the product of a pure short-period term, gy,
and a long-period term, f(a), i.e., f(a)g(4).
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A“-‘(‘i) * <ﬂ ;4(1.1) + N;>_ (3-25b)
' 1

The averaged equations of motion are now completely specified in terms of the
expansion of the perturbing function and, in the case of the variable 1 , the ex-
pangion of the osculating mean motion. More explicitly, substituting Equations
(3-25) into kquations (3-4) yields the following expressions for the averaged

equations of motion:

L}
da; H - e
—_— € (4.:,80D) ¢ 0™ (i=1,2,...,5) (3-26a)
at WA

st

N

di 3 - Net

* " o). € <‘6.i-*(3"") . N',>i + 0™ (3-26b)
T

The functions fi,k and Nk for k 2 1 are formulated in terms of the as yet
undctermined shorvt-periodic functions ‘Qi’ j This dependence is showm explic-
itly in Equations (3-10) and (3-13). The averaging operation docs wot frec the
averaged equations of all contributions from the short-periodic terms. Such
contributions are, in fact, the source of the higher ordor terms in the averaged
equations of motion. The product of two short-period functions can vield a long-

period term; for example, in the product
T .- 1 i
[nd) sini [ (g sink] « In@rg@) - T g(d) eonal

both factors arc of short period, yes the product contains a long-period term

(i.c., a term independent of § ).
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Inspection of Fquations (3-10) and (3~13) indicates that products of the partial

derivatives of the osculating force function, F;, with the functions TLI.’ j Appear,
as do products involving fwo or more of thce functions TLi’ i Such products can
produce long-period terms, as described in the above example, that will always

be of second or higher order in the small parameter.

3.2.3 Determination of the Short-Period I'unctions, 1T; i

The gereral formulation of the averaged equations of motion is completed by ob-

taining the functions TLi, j from the information contained in the method of aver-

R

aging. In the following discussion, these functions are determin~d without the

(=S5 e owm

constraints expressed by Equations (3-20) and (3-23). However, the justification

for these constraints is demonstrated.

A partial differential equation for the functions ni,j is obtained by subtracting

Equations (3~19) from Equation (3-14), yielding

= . =

ir
] YGRS
o, . ;. ;.
l . oL ' ao,“ biik i
; [_ pei wat

(i = 1,2,11.,5) (3"’27:‘)

s Fa 0 (R >
j-4 6
= Mg, My, j-p 3N, j-p
oL ' doy dav /1

[
[
I
[
i ¢ s N (R o)
0
i
|

(3-27b)
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If the superscript S denotes the short-periodic part of a function such that

b \

&« . 3 ;- . - <$\ . v o
L3 1, )-4 LWisd L o
: it 1
then the preceding equations can be expressed as t
L.
m b 6 s f
-— ;|j s a’z» i N S‘P . ~ o i '

n al a ;.‘J_x - ZZA\.P T 1= 1,2,...,0) (.,-2“3)
pri kad |
\
) PRI S s

. F) .
7 .3:_'! - ;‘ . N? - A _rz_i.d_p_ (3-28b) '
oL 6,-1 ) LY Y I ;
[ 119 K:1

Iaspection of Equations (3-28) indicates that the functions 12i,j i=1,2,...,5)

depend only on quantities of lower order. In the case of the sixth vaviable L,

PREvE,

the function TZG j also depends on the jth-order function 721’ i introduced through
’

i
the term Nj . Hence, the function nl,j must be determined prior to the function \Z ‘
’16nj ‘ 4
These functions are determined to within an arbitrary function ot the slow var- L.
iables, ?1‘, by developing the right-hand side of Equations (3-28) into multiple l i
Fourier series and integrating term by term. More explicitly, -

s it s
_ s &R Miie | - U
nhj - i i"’.‘ &,l) - Ak‘p ai‘ d‘. (3“29:\) -
Rk pel ll

(i = 1,2..--,5]

¢
i an } ‘
(IS I TG L ZZ o it i g [

el et

—-



y—
————
— -
—~ -
<N
v
P— -
A]
»

The functions ni,j therefore have the form
M, .1(3.‘1) « o@D s @ (3-30)
)

where <, j is a 27 periodic function of L with zero mean, i.e.,
b

<q;‘3 (3.,3.)>I =0 (3-31)

and C; j is an arbitrary function of integration depending only on the slowly
?

varying mean elements.

It then follows from averaging Equation (3-30) that

<m‘.>l = ¢ (D) (3-32)

This equation is a generalization of the constr

aints expressed in Equation (3--20)
aud Equation (3-23).

Therefcre, in order specify the functions ni,j most gen-
erally, a set of arbitrary functions of the slow v
the function C;

9

ariables is required. Because
j(?l) is an arbitrary function of integration, it can be
identically zero, i.e.,

taken to be

C;'i @) = 0 (3-33)

thereby reproducing the constraint used to obtain the form of the averaged equa-

tioms of motion given in Equation (3-26), Conscquently, the validity of the appli-

cation of the constraint expressed in either Equation (3-20) or Equation (3-23)
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has been demonstrated. The use of the constraint given by Equation (3-33)
| requires that the 'ﬂi j functions be purely short periodic and or mised short
*

|
[ periodic, i.e.,
g

Ny *® ?ls;'

)

ary, a se ctions 1; : containing only short-periodic terms can
In summary set of function i,j containing Iy short-periodic t

be obtained, and the near-identity transformation given by Equations (3-3) is

oompletely specified by the expressions

1
| l N ¢ -t
‘) i - 2 d 5.
-’ A+ = ’ & A Diie |
? : a, = a; + 'a'- € (I - k.p aak
‘;‘ izl k:t et

RENERE

: WNel
o + 0e™ )
( i 23,2,0..,0
2‘\ & -t s
Lais- ¢ & N A Sere |
] — . . - R ———
+ - 6,;-4 Y Y W aa,
- ksl 9ed
Ih ’ (=)
|
. + O(eM*Y

3.2.4 Computational Procedure

————— s A .

The determination of the jth-order contribution to the mean element rates (Equa-

tions (3-26) and the functions ﬂi’ j are mterdependent and must proceed serially

: on an order-by-order basis. To illustrate this procedure, the second-order

P
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e
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equations are presented more explicitly. Expressing Equation (3-26) to second
order yields

prolii X € AN i)> . a‘(ﬁ 3,,1)> o(e®) (i=1,2,...,5) (3-35
dt < '.o K.’ I A I + 1 a)

Tt Ree <f,_,(’a,i) X ux>_ . (4‘ (@D +ua>1 . Ol) (3-35h
] L b ]

Using Equations (3-13) and the constraints given in Equations (3-22) and {3-23),

- . S

the averaging operation yields the simplifications

- ATL™
N

- » W -
<N1(1,L)>i <— Y E: ’zl,l(t'l) i « 0 -3D)
; and
?:
| 3 . (5 B8 3R
{
= — =N - -——"N (3-38)
4] <‘ Gy 43 i <i &y "‘2
1 5 ® _a
g * <T ar
’:i
®
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in view of Equations (3-10), (3~38), (3~37), :nd (3-38), Equations (3-35) simplify
to

di, /¢ oF, (3, 1)
w7 C(RRDY e <Zrz.,,¢x.n . >I . () (a-soa

[ TSN

4=1,2,,..,5%)

(3
oF (1.1) I ®
| - e, a
+ & Z ‘thx..l) '—z-i;—- . . Ef le“(a'l) / (3-39b)
[ TXY

Inspection of this equation indicates that the first-or.der contributions o the mean
slement ratwes, Ai t » are independent of the functions ni j tiowever, the
? 1Y
second-order contributions to the mean clement rates, Ai o s require knowledge
»2

of the functions 1) i,j - Hence, the computation must proceed as follows:

A, » <F;i8,l)> (i 1,2,...,6) (31-40a)
' i

(i = 3,2,.00,3) (3-40b)
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6
aF;
AI,& = <an.1é—a—> (i=1,2,...,5) (3-40d)
LETS " 1
: OF, 1s A
A . = e L 2 D0 -
b Ts 3o s s Ny ) (3-40e)
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This procedure is followed in extending to higher order the averaged equations

of motion.
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3.3 AVERAGED EQUATIONS OF MOTION FOR MULTIPLE PERTURBING
FUNCTIONS
The preceding anzalysis can be extended in a straightforward manner to the case
of multiple perturbations contributing to each element rate. Examples of such
cases are: inclusion of more than one spherical harmonic from the nonspherical
gravitational potential field, multiple third-body perturbations, and ~ombinations
of these effects with atmospheric drag and/or solar radiation pressure. To first
order in the small parameters, this formulation is identical to summing the first-
order averaged equations of motion (Equations (3-26)) for each perturbation.
However, at higher orders, mixed (coupled) terms appear in the averaged eq .a-
tions of mction. To illustrate this phenomenon, the case of two perturbing func-

tions is considered. The corresponding set of differential equations is given by

do; -
T eRAN + VaED (71205 @)

de

PR eF (T,0) + VG (Q,L) (3-41b)

The near-identity transformation (Equation (3-3)) is generalized to

P

N MG

Q; = E;+Z Z e vt Piix + 0E™) (i=1,2,...,5 @-42a)
)»0 k0
(14 j+Kk)

_ N MG K
J Z Z e g+ 0(e™) (3-42b)
j.o ked
(14 jok)
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where the functions 'lbi,j,k = l/Ji j k(g, 2) and are 27 periodic in the mean fast
)y

variable £ .

The transform of the original system (Equations (3-41)) is assumed to be of the

form
_ N M)
da; )k Ned _
= € V" Bijk + O™ (i=1,2,...,5 (3-43a)
d j:o k:0
(1£}:k)
- N MG)
-&iz =N+ Z Z elvk Bujx +0(e™h) (3-43b)
3-.0 k=0
(L4jek)
where the functions B; ., = B. . (f) depend only on the slowly varying ele-
Lk ik

ments. Equations (3-43) are a generalization of Equations (3-4) given previously.

The constraint 1 < j+k is imposed on the lower limits of the double summation
in Equations (3-42) by the assumption that the difference between the osculating

and mean elements is, at most, of first order in one the the small parameters,

i.e.,

lai- 3] ~ wax [0le), 00| (3-44)

Similarly, the same constraint is imposed on the lower limits of the double sum-
mation in Equations (3-43) by the assumption that the magnitude of the mean eie-

ment rates is, at most, of first order in one of the small parameters.

In Equations (3-42) and (3-43), the upper limit on the summation over j, N, is
chosen such that all contributions through order O(GN) are retained. Terms with

increasing powers of v obviously require decreasing powers of € in order to meet the

3-31 ,
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criterioa that only terms of order less than or equal to O(EN) be retained, i.c.,
O(ej VK) < O(eN) . Specifically, for a given value of j, the maximum value of

k , M(j), is given by the integer part of the expression

log €
log UV

M) = (N-}) (3-45)

and the range of M(j) is 0 = M(j)s T = [Nﬁ;] for Nsj<0.

Differentiating Equations (3-42) and substituting Equations (3-43) for the mean

element rates into the result yields

N M()

da. _ 0%k
6 'U ‘)\k + N 65.
120 &0
(iﬁlbk)
i=1,2,...,5) (3-46a)
6 > N-§ M()-K
+Z“—_¢ ). 2, €vByyue] + 0™
(3 9 b&% j"D k':0
) (1¢ )'&k')

N M 54:
. 6,
E: E: ¢V (B“‘“ o;

10 k30
(1 xbk)
(3-46b)
b a¥, Ny MGk
0%,k LY N+d
+ Z j Z el vk B%‘y)w> + 0()
sD k's0
¢t (xsy+k)
3-32
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which is a generalization of Equations (3-6). Rearranging Equations (3-46) yvields

the following generalization of Equations (3-7):

N mG) "
120 k=0
(16 yvk)

(i=1,2,...,5) (3-472)

O i ks Nty
Z Z Z %‘r‘ . 60-%, + O(G‘_ J

et O ss0
(_g_< (ras)¢ LekY]

(3-47b)
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atP,
20 (B B YT
20 IR
.21:': O) 1 r:0 s$:0 6(1.,%_
C 1€ (ras) ¢(ja)]
N
= & B T 64’ --\» v, 0
_\O B »J
j=1 (l\ a&.%
q: 4 vz
M(j:0) ) . R (3-48)
+ Z v (B, ok + T |f.k N 8 dw,'o‘k <
) oL 9,05 Ky
k=1 q:1 =1 ¥
N-L o m() .
Vg K S
+ ety B JK+T |2)k - B bq’gu-r,k-s
1 Key o bre o
J =1 r0 s:0 ¥

L1 (rae)e (342

for i=1,2,..,,¢
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Expanding the perturbing functions ¥, and G; in Equation (3-41) as a Taylor

series and then arranging as a power series in the small paramegoy yields

eF (A, +vG6 @0

N-1 Wsl)
Z Z G' v (eFle *‘vg.,kw + O(G“‘1>
JzO k20
M(JIO) (3-49)
ZG 'F\)io + Z v 9i,0,%-1
ot ki
N-L MG) -
.
+ el vt (‘c;,_‘,-x,k * 9;;,&1) + O )
‘=1 kel
where
= F(R 1 - AGE 18 o
$~.,o\o - F(K\l) O;;"‘\\:\NA‘J(‘\OI\_‘AYY (3=-502)
( 1
b
_ ¢ oF,
0 4,4,0 aa% (3-50b)
L
6
R
QO L 6-6.% (3-50¢)
g
OF; Fi
Q"\,a.o s ‘P%,ao 6" -t-- 4’%‘10 £,4,0 da%éﬁ (3-50d)
Y
3-356




e,

o~

b
d3F;
a:z<401 g Zq’goﬂp&.oxm* (3-50e)

gL

b
oF,
l‘i Z ‘P%il ba%

L
" 3¢
1 i
+'5:Z ("Pq.io ‘Pto L ¥ 4‘%014)‘ ‘o) bu.%“ ai .

=1

(3-50f)

etc. The functions g, j,k are identical to the above, with the exception that the
rJe

function F,(a, &) and its partial derivatives are replaced by the function G(%, £)

and its partial derivatives evaluated at A =a, £ = £.

Expanding the mean motion, n, as a power series in the small parametier yields

(1< :\»\0

1]
sl

N M(j+D)
* Z €Njp + t v* No.k (3-51)
i kel

N-1 M)

Z z el ot Niw + 0(eM)

')si. kst
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wiere "
Nt,o * - % %1 ‘P1‘g'o (:)1;1(3&;:“ :S:&'N (3-52a)
Noy = - %% ‘V‘Ai (3-52b)
ng - _%5_ —na. ‘Pt,lﬁ - P{ % ‘1",.;‘0 (3-52¢)
Noa = %— % ‘P:o,x - % %‘-L ¥i0.a (3-52d)
Ngy = % {:‘ ¥ 10 Yoy~ -35 -;-1‘ 4’1|1 (3-52¢)

and so forth.

Equations (3~47), (3-49), and (3-51) are substituted into Equations (3-41) and

terms with like powers of the small parameters are set equal, thus obtaining

b AL
Wise Ve oM G s
B\ )0 + Y\ Qf“o 63% \.‘5-1.0 (1= 1,2,0040,8) (3-03m)
s L rt

6¢@h b¢6 -0
Peio * T L z Z Bq.no au; * Fojo0 +Njo  a-530)

where 1SjSN.,
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A
- ¢
B, 0, 'ﬁ Z 9 1,0,k 2Tuoks
" %)°'5 3% T Qoks (71,2,...,5) (3.51
“L (X%
v, 6.0, k-1
K
B‘Ok+n ‘”’ +ZZB Osa‘f“'& =
4oL ? 15 dh'q g‘,o,k-x + No)k (3-54b)
- 5z

where 1<k < M(j=0)

B)ski-n |AK+ZZZ |3rks
%Irls

o: 1 vi0 440
[1_<(ns\< (3+x) )

= £

| (i=1,2,...,5) (3-333
\)A-i‘k * %\\s’k‘l ’ )

B‘,j\k + W »J. ZZZ Bq)rsaq”b,\rks

%st r+0 s:0 %
Cis (rasye (1) ]

i (3=H3b)

Sd-lk * Qi+ Ny

where 1 <Jj <(N-1) and 1<k< M) .
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ing cquations for a single perturbing function given by Equations (3-14). Conse-

quently, to obtain the complete higher order contributions for the case of two

¢

&

i

{

‘ ‘ Equations (3-53) and (3-54) are <gsentially identical in form to the correspond-
j i

T perturbing forces, Equations (3-55) representing the coupled terms must be

! adde i to the equations for each perturbation given by Equations (3-14). Equa-

' tions (3-53), (3-54), and (3-55) are then averaged (essentially as before), yielding
the averaged equations o1 motion; the remainder of the solution then proceeds as

I U before. The final results are as follows:

)

Y

Ay U

| Bi,j,O = <‘Fi,j-i‘0>_ i=1,2,...,5) (3-56a)
; L

| &

|

o Be.n = (5,0 «N: (3-56b)
“ s 6,,0 e,j-1,0 "o i

-—y
—

U

where 1 <j <N

Biok ° <‘5:,o,u-x> (i=1,2,...,5) (3-56¢)
‘ L

BG.O.k = <‘56,o,u.1 . No'k>i (3-56d)

where 1 <k < M(j=0)
Bi.i.k = <$i,3-1\\\ * ‘5‘.,3‘\‘-;>I (3-56¢)
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B‘:j‘k s <{’6,j-1,k * Ye,j k-t * N >1

where 1< j< N-1 and 1< k < M(j)

[ 1,3-1,0 ZZ QN0 M_;o]di

(lsl red

si|-

Yijo

(i=1,2,...,5; 1<j<N)

1 6%, -\"0
2t § o i

QQL rel
(1<j<N)
6 k-1 S
o . L Wioks | -
Wk n .ok 0, 55% di
L ssi
(i 1,2,0..,5; 1< k<M(:0)
- 205
i 6o\u "
Yook * 7 |:‘35¢>k- “ok ZZ Bq.0:s 81q Jd"

%\L 64

(1 < k < N(j=0))
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o~

3-57q)

(3-57b)
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{3-57d)
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%11. vs0 ¢:0

L 14 (rae)<(jowd]

(i=1,2y000,5; 1< j<N-1; 1<k<M(G)

i S g S
‘Pe,;,k‘ H ‘s,g.s,k g et * N

M’s Y k-» -
ZZZ LA “1 a

% L o0 40

(1<j<N-1; 1<k<M(G)

(3=-57f)

where the superscript S again denutes the short-period part of the function. The

assumptions used to obtain Equations (3-56) and (3-537) require that

s
ik © Piik

as in the case for the single perturbing function.
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The explicit averaged equations of motion to 3~cond order in both small param-

oy

eters reduce to

—aafil .
o

| --'- F. (c, > Ly
; . € < (T l)> TARY) (A1 1.
' ! 4
: oF oG 9 \
i oL o%i . :
6: <W% aa‘ _ * &V <4)%,°,1 bh.-q + ‘p%,t‘o 6‘6%2 (3"083) N ' -'»"
. -J }

-

(1=1,2,..4,9)

i
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Extension of the discussion to an arbitrary number of perturbing functions is a

straightforward but tedious exercise. The differential equations take the form

L3
dai | Y i ML) (i=1,2,...,5 (3-"9)
dt ot :
d1 3
a - "t kzg,“‘“s.kw’” (3-539b)

where rk (k=1.2,. .,K) are K distinct small parametcrs (i.c., ‘o’l =€,
‘(2 = v, etc.) and Hi K is the kth perturbing function acting on the ith element
1
(i.e., Hi,l = Fi(E, L), Hi,2 = Gi(ﬁ,z ), etc.). The near-identity transforma-

tion and the transform of the above differential equations become

»

- i1 31 g - =
., 0@, +Z Z Z L PR PRI tll,di :‘:\.“‘SKCQ.,Q) (3-60)

i ola K
i-1,2,...,6)
and
dn; ZZZ o T L= 261
. =l Yo% % B (@) (-ain
PR W 'Y
(1=-3,2,0.4,9)
de . = ZZ Wooda % o o
.EE. \ 4 / Z % “ (K $6‘}1‘);‘."\3K(Q) (3-61h)
i da A%
respectively, ORIGINAL PACE I

OF ROOR QuaLrTy
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The perturbing functions are expanded in the form
. 7 x e e e e (] . . . 3-
’ Hik(d,0) > E ) T Y v h '1k»11v.\a»"'dx(&‘1) (3-62)
! A N
: ST TN Ik

etc. Further pursuit of this procedure adds little additional insight except for

an appreciation of the cumbersome expressions obtained for the final results.

A less involved approach is presented next, based on the fact that the practical

[

application of such theories is almost always limited to at most second order in

the small parameters (see Section 3.5). As previously shown in the case of two

perturbing functions, the second-order averaged equations of motion for a single
pe: ‘urbation are summed and the coupled term is then added. For K perturbing
functions, the same procedure holds to second order, i.e., K equations of the

game form as in the single perturbing function case are summed. The coupled

terms are then evaluated to complete the second-order contributions. The number

[ ; of coupled terms is simply the distinct number of pairs obtained from K objects

taken two at :. time, i.e.,
Kl LK (k-1)

Lo (k-2)! at 2
i

This procedure provides for all contributions from the K perturbing functions to

| the averaged equations of motion through second order in all K small param-

‘eters, ‘(K .
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3.4 MODIFICATION OF THE AVERAGING OPERATION FOR RESONANT
PHENOMENA

A commensurability of two mean mocions appearing in the dynamical system, e.g.,

the satellite and third-body mean motions or the satellite mean motion and the

central body rotation rate, can contribute significantly to the long-period motion

of the satellite. The generalized method of averaging presented in Sections 3.2

and 3.3 is directly applicable to cases involving such resonance phenomena.

The basic objective in applying the method of averaging to the orbital equations

of motion is the removal of short-period terms. The averaging procedure de-
fined by Equation (3-15) removes the high-frequency components of the motion

for the majority of problems but is not suitable for the treatment of all resonance
phenomena. In those cases for which resonance phenomena are significant, the
averaging operation given in Equation (3-15) may have to be modified. The neces-
sity of this modification depends on the criteria used for selecting short-period

terms and the characteristics of the perturbing functions.

3.4.1 Frequency Characteristics Specific to Resonant Phenomena

The existence of a resonance condition, i.e., a commensurability in the mean
motiouns of the fast variables of the perturbed and perturbing bodies, dictates that
these fast variables cannot be considered mutually independent. An arbitrary

term in the Fourier series expansion for the perturbing function takes the general

furm

Ak 08 (JL - KL +81) + By sin(jt -k +8;) (3-63)

where L and &' are the fast variables of the perturlzd and perturbing bodies and

6, and 85 are linear combinations of slowly varying angles.
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The fast variables £ and £' are assumed to have the mean motions n and n',
respectively. If the ratio of the mean motions is approximately equal to the
ratio of two integers, i.e.,

n N
w W (3-64)
then
N'n=-Nn = 0 (3-65)

The fast variables thus obey the relationship

NL-NL = & (3-686)

where the function 4= u(t) is a slowly varying angle which produces only long-
period effects.

One of the fast variables can be eliminated from the perturbing function using
Equation (3-66), resulting in a formulation dependent on only one fast variable
and an additional slow variable u(t) . Eliminating the fast variable 4' from

terms of the form given in Equation (3-63) yields arguments of the form

{ 8in

lwsi {(;m - kN") -fj- + 6 (3-87)

where

9, 9‘-'3';1. (4 =1,2)
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Elimination of the fast variable £ in favor of £' yields trigonometric arguments
of the same 1c:m. More specifically, the quantities N and N' are interchanged,

L is replaced by £', and 0; is defined by the sum rather than the difference.

In general, arguments of the form given in Equation (3-67) produce fractional as
well as integral multiples of the fast variable £ . This is specifically the case
when kN' is not a multiple of N . An arbitrary decision to consider only integral
multiples of the fast variable as short period is not practical in this case, partic-
ularly in view of the desire to maximize the integration step size. For example,
the case of a close-Earth satellite in a 12:1 resonance with the EKarth's rotation

is considered. From Equations (3-64), N =12 and N' =1, and the argument in

Equation (3-67) can be expressed as

. k
L+ Krue’;

This argument will contribute terms containing the fractional! arguments

1/124, 1764, 1/48, 1/38, 5/128, 1/24, 7,124, 2:32, 3 44,
and 11,12 @

for those values of k which are not multiples of 12, The averaging operation
defined by Equation (3-15) will not remove terms with these arguments. Defining
terms containing the arguments 24 and £ as short period and terms containing
1/24, 11,124, etc., as long period would restrict the integration step size to
approximately one-eighth of the satellite revolution period. To maximize the inte-
gration step size (hopefully to the order of several orbital periods), while retain-
ing the basic long-period behavior of the dynamical system, all dependence on the
fast variable should be eliminated. This requirement is identical in philosophy to
that imposed in the selection of the averaging operation for nonresonant phenomena

(Equation (3-15)).
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3.4.2 The Averaging Operation for Resonant Phenomena

When resonant phenomena are included in the equations of motion, the selection
of an optimal averaging operation is dependent on the form of the perturbing
function. The resonant contribution is embedded in this function and is isolated
bv the application of the averaging operation to the function. For this discussion,
the resonant perturbing functions are separated into two categories: embedded
resonant terms and quasi-isolated rescnant terms. These categories are dis-
tinguished according to whether or not the perturbing functions contribute terms

with fractional multiples of the fast variable.

An embedded resonant term contributes fractional multiples of the fast variable.
Such formulations of the perturbing function are frequently encountered in numer-
ical averaging applications where the perturbing function is formulated in terms

of the complete perturbing acceleration (Equation (2-15)).

The second category of perturbing functions (i.e., quasi-isolated resonant terms)

contributes only integral multiples of the fast variable. The resonant contribution
has been partly isolated from the complete perturbing function such that only intc-
gral multiples of the fast variable appear. More specifically, the perturbing func-
tion is restricted such that the integer k in Equation (3-67) takes on only values

which are multiples of N, i.e.,

k = pN P=1,2,...)

It is important to note that no restriction has been placed on the integer j in
Equation (3-67). Since only particular values of j produce the resonant contri-
bution, the quasi-isolated resonant term contributes both short-peviod (integral
multiples of the fast variable only) and resonant contributions to the motion. If
the values of j are restricted appropriately, the resonant term is completely

isolated from the perturbation function.
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As an example of a quasi-isolated resonant term, the 12:1 resonance example
cited previously is again considered. If k is restricted to multiples of N, i.e.,
multiples of 12, then all fractional multiples of the fast variable are eliminated.
These terms correspond to the tesseral harmonic terms in the geopotential of
order 12. In this case, any geopotential term of order 12 would be a quasi-
isolated resonant term. The specific resonant term, which will be isolated by

the application of the averaging operation, corresponds in this case to the value

of j where j =1,
3.4.2.1 The averaging Operation for Embedded Resonant Terms

In the case of embedded resonant terms, fractional multiples of the fast variable
appear in the perturbing function. In view of the form of the argument given in

Equation (3-67), all dependence on the fast variable £ can be removed by defin-
ing the averaging operation to be the definite integral over the angle o = £/N on
the interval 0 £ o <27, Expressing a function of two fast variables denoted by

H in terms of the fast variable ¢ and the slow variable up yields

H(T, 2,2 = W@, Lu) = W@, o)
The average of the function H*(R, o, p) is defined as

ar
<H“(b‘.,c-,,u)>‘r a 51; f HY. o u)do (3~68)

JO
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j The averaging definition can be expressed explicitly in terms of the fast variable

L. f0<o<2m, then 0< £ < 27N and

! ar &‘NN
| Y | Wi w) do Y WL W de
1,", L} Q'lo-)l"(' 1,"N b | 7}1'
0 0
‘ (3-69)
. AN
H l o~ ]
b = — H(Q,2,2YdL
' AN
i 0

Therefore, in the case of an embedded 1 jonant term, the definition of the aver-

aging operation should be specified as

P .~

&N
- ] 1' - ]
<H(u.,9.,n.) ><r * Tn Hia, e,V de (3-70)

This definition has been used by Schubart (Reference -13) for performing a numer-
ical investigation of ithe Hilda group of minor planets which exhibit a 3:2 commen-
surability with Jupiter. Also, Benson and Williams (Reference 44) used the same
definition in their numerical investigation of resonances in the Neptune-Pluto

; system.

: It should be noted that the above averaging operation removes only those terms

with periods of 2N or less. 1t does not remove any contributions to the motion

. caused by the resonance, since the fundamental period in the motion caused by

the resonance is contributed by the angular variable g and is given by

am
' N'n - Nn'

+

Ptnsms o

o~
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Clearly, if Equation (3-65 holds,

LT

—_>»
Nn - Nn TN

3.4.2.2 The Averaging Operation for Quasi-Isolated Resonant Terms

Since only integral multiples of the fast variable, £ , appear in the case of quasi-
isolated resonant terms, the averaging operation given in kEquation (3-15) is

applicable. It is repeated here for convenience:

3
i

<H*(&,l,£’)>£ aliren HY(4,R,2) dL (3-71)

where H* denotes a quasi-isolated resonant term.

The distinction in the averaging operations given in Lquations (3-70) and (3-71)
has an important implication for numerical averaging theorics where the aver-
aging is performed using a numerical quadrature. The perturbation model must
be evaluated at each abscissa in the quadrature interval (usually between 12 and
J6 points per interval). Numerically averaging an embedded resonant term
requires N times as many force evaluations as the numerical averaging of a
quasi-isolated resonant term for a total of between 12N and 96N force evalua-
tions. Therefore, in the application of the numerical averaging methods, the
perturbation models should be restricted to the quasi-isolated resonant terms

whenever possible.

The spherical harmonic expansion representing the nonspherical gravitational
potential is well suited for obtaining by inspection the quasi-isolated resonant
terms. The commensurability is directly related to the order of those terms
which contribute to the resonance. Such is not the case for the <losed-form,

tnird-body perturbing acceleration or even for the standard expansion in
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Legendre polynomials for the third-body disturbing function. The resonance
contributions remain embedded in these particular forms. However, the third-
body disturbing function can be expanded in spherical harmonics using the asso-
ciated Legendie polynomials (Reference 18). The quasi-isolated resonant terms
are then immediately obvious as in the case of the nonspherical gravitational

potential.
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[+ 3.5 THE APPLICATION OF HIGHER ORDER AVERAGING THEORIES

The implementation of a jth-order theory requires the explicit determination of
the near-~identity transformation through order j-1. Consequently, higher order
averaging theories are significantly more complex than the first-order theory.
Examination of the second-order averaged equations of motion indicates that a

first-order theory should suffice for all cases where the amplitude of the first-

order short-period variations in the osculating elements are small, either abso-

. lutely or relative to the amplitude of the long-period variations in the mean

J; elements.
| In cases where a second-order theory is needed, it should be applied selectively
- to those terms producing the largest short-period perturbations, e.g., the

oblateness (Jo) term in the zonal harmonic expansion or the first few terms in
the expansion of the third-body disturbing function. Such restrictions are usually

justified on physical grounds and by the practical considerations of implementing

T | =0

" a higher order theory. For those cases where such restrictions cannot be

justified on physical grounds, an alternate formulation of a problem, e.g., a

EL‘:

restricted three-body problem, should be considered.

P i "
' -

3.5.1 The Significancc of Second-Order Terms

Two questions are of particuiar iuterest cencerning the possible significance of

=

second-order terms in the avcraged equations of motion:

° How do the solutions of the first-order equations and second-order

equations differ with time ?

° What are sufficient conditions such that second-order terms can be

neglected over the time interval 0 St <T ?

A precise answer to the first question is impossible without generating the actual
solutions; however, a qualitative estimate of this behavior is possible. The
answer to the second question is provided by inspection of the second-order aver-

ag2d equations of motion.
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3.5.1.1 A Qualitative Comparison of the First- and Second-Order Theories

i i The quantity [ 2'(t), Z'(t)] is defined to be the solution of the following system
! = of second-order averaged equations:
1
i da
a > 2 ,
*-; -;t—'- = € Ai,x(‘l’) v e A;‘a(ﬁj) d=1,2,...,5 (3-72a)
"4
l K - = ; o
§ g{i = (T + eA(d) 4 €2 Ao (B (3-720)
|
-
E Similarly, ['T"';*(t), I‘(t)] designates the solution of the syvstem of first-ovder
"1
t" averaged equations
) 4E*
| it (e L= 1,2,...,5) (3-T3
{ e e A, (") (- 1,2,0.0,8) (3-730)
| di* _
TRl n(3y) + eAb‘x(ﬁ‘) (3-73b)
' The difference of the solutions is designated as
o - - %
“‘\(U = 0..-,(*.’ - (%) 0 L2, 00,0 (3-Td
) = 2 - 27w (374l

This discussion tollows closely that given by W, T, Kyvner in a series of lectures
on the topic of nonlinear resonance (see Reference 8),
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A set of differential equations representing these differences is given by

%::_i e MA@ - ALAD] ALY 6z eetse

%% 2 (@) - n(@]) + ¢ [Ab.,, (}') - As.a(i')] + €A, A 6-150)

It {ollows that

t

t
[rite)] = € J; [A;‘t(i‘)-A\‘a(ﬁ‘)] dt’ + e‘f A; 21 dt',
0

t t (3-76a)
< 6L [A (R - A (B9 ] at + eaj; ,Ai\l(i') | at’

and, similarly,

t
| rotd)] sf |n@1) - n(34)]| dt’
0
\3-76b)

t . t
+ GJ; | LTS (3') - Agy (DY) l dt’ + e‘j; |A6‘;(ﬁ')| at’

The functions A; y and n are assumed to satisfy the Lipschitz condition
]

AL - AL < Gyl - 20| = LFW] d=n2,.0,6 3217

"w
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on{ interval 0 <t <7T, where Li and L' are positive constants and where the
vector T censists of the components r (where 1 =1,2,...,5). It is sufficient
that the nartial derivatives of the functions A and n exist and are bounded on
the interval 0 <t < T for Equations (3-77) to be satisfied. It is also assumed
that the absolute value of the second-order function A{ o i3 bov. trom above

9 -

ca the interval 0t < T, i.e.,
Aial = M for 0<t<T

Substituting Equatioas (3-77) into Equations (3-76) vields the inequalities

~t
Ir.‘(t)l < GL'.j I?(f\l at' + G.aM;t 1 1,2, 00,1 (3-T%)
0
t ¢
[ ret)] < eL6J[ [T at’ + L'[ |F QY] dt’ +eaMbt AN
0 0

To simplify the discussion, the posative constant 1 1= - hosen such that

6

L2 Z L,
it

L2 1)

and

6
L2 Zm-‘
1zt

3=56
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Then, summing Equs.ions (3-78a) over i yields the inequality
t
2 2
7] = ) Inlb] = eLf |7 dt’ + € Lt

oy o

1t also follows that

t
| re®0] < (L«-e\Lf\?(k'\ld‘c'*- et Lk
(U

Using the generalized Gronwall inequality,1 it is easily shown that

t
¢
- 4
| ¥ (0] ££ cxp(eLL de) e"Ldr

t
=f el exp[eL(t-'cﬂ dr

0

= € [exp(e\.t) —1] < & Lt exp (eLt)

1The Generalized Gronwall Inequality (Reference 45)

If the following four conditions are met:
(1) »t), ¢(t), and u(t) are defined on the interval tgSt<T
(2) A(t) is greater than or equal to zero and is summable
(3) ¢(t) and u(t) are absolutely continuous
(4) the following inequality is satisfied

t
wit) € M) w(T)dt + ¢(f) (tyS 1<t
&, !
then
t t t d
wlt) € ¢ty e.xp(j; Al) d'l:) +f cxp(f )(8) de> %
0 t, T
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Substituting the minimum of the upper bounds for |?(t) |, i.e.,

|7 < e [exp(eLt) -1] (3-81)

-
e m—— A o g e S

into the inequality for |r6(t)| yields

&
eel) = (l*e)éLf[cxp(eLt‘%i] dt' + €*Lx
: 0

]

(1re) [explert) - 1-eLt] + €Lt (3-82)

< elt(e+elt) exp(elt)

It is noted that this last result is not in agreement with that obtained by Kyner, i.e.,

\rsm\ < eLt[&exp(eLt)+e-t] (3-83)

In summary, the difference of the first- and second-order solutions is bounded by

the functions

. \ﬁ.‘- ﬁ."\ < Lt exp(elt) (3-84a)
|- 2% = (et + *) explelt) (3-84b)
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If the time t is restricted such that eLt<«1 (i.e., 0s ts T (eL)'l), then

generally the order of magnitude estimate of the divergence between the first-

and second-order theories is given by

|Z' -8 ~ 0(e?t)  (for 0sts T (el (3-85a)

and ‘
ORIGING b S&&
-, = P
|IL' - 2% ~ O(edt) OF (for 0 st < L1 (3-85b)

|E'- B*] ~ 0(e?td)  (for L'l tsT«(el)™)  (3-850)

The above error estimates can be mapped back into the osculating elements using
the near-identity transformation. Only first-order terms are assumed, since
only first-order terms are required for the second-order averaged equations of

motion. Evaluating the near-identity transformation

R=a+re(TD) +0(ed)

L= Lvren, @1)+00H

with the elements obtained from the first- and second-order solutions and taking

the absolute value of the difference yields the inequalities
|2 -3 < |2'-2° + €|7(a, L) - 7ar1v| (3-86a)
|L-2%) < |T- 24 +eln (@i 1) - 7, (AFEN)| (3-86b)
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where ﬁ is a vector with the components ‘Qi 1 (=1,2,000s5)
’

Since the constant L can be chosen to satisfy the Lipschitz conditions

M@ -@I < LFW]+ L] (3-87a)
m"{f', L) - 725,1(3*\1*)\ s L[FW] & r )] (3-87b)

Equations (3-86) can be simplified to give

|3'- 8% = (Leel) [FW] + eL|r )] (3-88a)

18- 2% = el|FW®]+ (Lrel)|r )] (3-88b)

Substituting the upper bounds for | r(t)l and Ire(t) | into Equations (3-88) yields

the inequalities

|2'- 2% & e?lt(1+del+el®t) exp(elt) (3-892)

|2 - 2] = edLt(1+2eL + el +14) exp (elt)  (3-89b)

which yields the following qualitative estimates for the osculating elements:

|bi'- '&“I ~ O(éat) (for 0St<T« (eLy1 (3-90a)
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|2 -2 ~ 0(et) (for 0 st <Ll (3-90b)

|4'- 2% ~ 0(e®t?)  (for 0<t s T (e (3-90c)

when the restriction eLt «1 is imposed. Thus, the qualitative behavior of the

oscu’ating elements is, in general, the same as that of the mean elements (Equa~
tions (3-85)).

In summary, for arbitrarily small €, the difference in the first- and second-
order theories is arbitrarily small. For a given €, the difference in the theories

will be sufficiently small for some interval of time 0< t < T, where T ~ O(e'l).
3.5.1.2 Sufficient Conditions for Neglecting Second-Order Terms

The second-order averaged equations of motion are given by

%‘ZL e A () + €A () + Oed (i=1,2,...,5) (3-91a)
I v n@y) + Ay (D) + € A + 0D (3-91b)
where
(F;(‘E,‘i))l (1=1,2,...,6) (3-92a)
ll Z( \\l 60k>L (1=1,2,.44,5) (3-92Db)
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Inspection of th second-order averaged equations of motion indicates that, for
the limiting case in which the first-order short-period variations of the osculat-
ing elements are identically equal to zero, the second-order contributions to the
mean element rates vanish identically. Similarly, if the amplit- 'es of the first-~
order short-period variations are small in magnitude, the second-order contri-
bution to the mean element rates will be small, provided that the short-periodic
part of the function 3F,/ aﬁk is not large. Finally, inspection of the second-
order equations indicates that the effect of nonzero second-order terms will be
most significant when the first-order contribution to the mean element rates is
very small or zero., Consequently, the inadequacy of a first-order theory will
be most apparent when the element history approaches a local maximum or

minimum value.

Before further discussion, the following relation will be demonstrated:

AR E,D) oA @ a7, 1(i,I)

FY I IR EY N (3-93)

where ( ° ) indicates d( )/dt. (Since extension of the following discussion to

the case i =6 is straightforward, it is not presented.)

Substituting the relation

F (L) = R(ZL) «0(e) =1,2,...,5) (3-94)
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into the high-precision equation (from Equation (3~2))

do.; R

<t = eR@y (1=1,2,...,5) (3-95)
yields the result

da -

& © €R@ED « ol (1= 1,2,...,5) (3-96)

Differentiating with respect to time the near-identity transformation from Equa-

tion (3-3) 3
da; da; dniy ;=2 =
\ i (3 A
< +C (a.2) «+ OCe®) 3-97 4
it dt at o (3=97)
3
and substituting into the result the expansion of the mean element rate from Equa-

tion (3-4), i.e.,

da,
-ﬁ- = e A (@) + Oed) (3-98)

yields the relation

da;

< € [Ai,t(i) + 4 n. (i,l)] + 0Ced) (3-99)

dt *ui
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Comparison of Equations (3-96) and (3-99) yields the result

drl'\.l.(i)i
dat

FED = AL@) + (i=1,2,...,5) (3-100)

and Equation (3-93) follows immediately. As a result, the second-order contri-

bution to the mean element rates reduces to

)
= L 5Ai.t i, x)
A"a(a‘) ) Z <7Zk-i ( bﬁk A0 >

Wel

. (1=1,2,00.,58) (3-101)
. /72’ My

ksl

since, by Equations {3-22) and (3-23),

LLIR dAi L -
qk.lﬁ:‘ \ = auk ’zk.l ; =z 0 (3-102)

v

The requirement that the magnitude of the short-period part of the function
bl’i, aak is not large then reduces to the requirement that the magnitude of the
function aﬁ.i,l Bﬁk is not large. It seems reasonable to expecet that, if the
function fli,l has a small absolute variation and theve ave few local extrema
over the ianterval corrvesponding to one satellite period, then the first time der-
ivative of the function should not be large. This assumption should also extend

to the partial derivatives.
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A somewhat more formal criterion for neglecting second-order terms requires
simply that the integrated effect of the second-order term over the interval
0 <t <T be less than some specified tolerance 6, i.e.,

t
eaf Aia@rdt < 8

0

(i = 1,2,-0-,6) (3-103)

or, more specifically (in view of Equation (3-101)),
t .
,
D) -
€ j <7Zk.s. cli: < & (3-104)
o !

Clearly, the integral of the second-order contribution can be bounded as follows:

t A
a . = 2 *
e.f Aial)dt < e f IA;.a(a) I dt (3-105)
0 0

and it follows from Equation (3-101) that

- My
A | s <’Zk . —ﬁ:\—} ,
k:d

ZP.‘ = M

[ X

(i = 1,2,...,5) (3"106)
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where p, and fi,k designate the maximum variations of the functions T[k’ 1 and

3121, k/bﬁk , respectively, i.e.,

\ Qk,x\ < Ly (3-107a)

ik (i=1,2,...,5) (3-107b)

{5’:&;.1 !
T

For the case of the fast variable (i.e., where i - 6),

b’l“ 1§ W a ' X
<sz1 aak >L + -é— i-f_— n1.1>i {(3-108)

and, therefore,

3
‘Ab,:\\ s Z Pu e + Kpi‘ = My (3-109)
k=1
where
15 A < K
g8 lay | ~
It follows that
t t
2
e‘f A-“a(ﬁ) dt < e":[ M;dt = eMit (i-1,2,...,6 @-110
0 (o
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Thus, the second-order term may be neglected when €2 Mit <6 (1=1,2500.,6),
that is, over the interval 0<t<T, where T = 6/(€2Mi) . Therefore, the time
interval over which a first-order theory is valid depends inversely on i‘ie magni-

tude of the first-order short-period variations in the osculating elem~. *».

A relative criterion for neglecting the second--order terms provides .".¢ a ..ttle
more insight in practical applications. Essentially, it is required that the inte-
grated second-order contribution be negligible when compared with the integrated

first-order contrihution over the interval 0 £t < T . Specifically, the condition

t

eaf A“Adf
0

is to be sal:isfied.1 As before, the integral of the second-order term is easily

t
ef Ajydt | o~t<m (3-111)
0

<< may

bounded by
t
a : < e ,
e | Ajadt| = e" Mt (3-112)
o
AL PAGE 13
Also, if the following definition is made ?\&I(};,{I)\(I)R Ql; ALLTY

Aq; = max

t
ej A'.‘; dt (i=1,2,0..,6) (3-113)
0

1’I‘he coupling between the second-order and first~order contributions is assumed
to be negligible. 'This argument is valid onlv for the bounded periodic elements
or very slowly growing secular elements, since the rapid first-order secular
growth of the fast variable would satisfy the inequality even for large second-
order contributions. This criteri.n is really useful as a negative criterion spec~
ifying when second~order terms arc lefinitely neces- ary rather than when they
can be neglected.
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then the inequality in Equation (3-111) will be satisfied when I} ,
J
| eaM;’c « AQ; (i=1,2,.04,5) (3-114) i1
i ]
H
or "
‘1’ L‘: v
| |
‘ aM; ;
‘ € — t « 1| -115 -
l -
) ( {
| L
‘ If *i,k (Equation (3-107b)) is replaced by the order of magnitude estimnate % ‘
: &
] S '
f (on o A ¥
! . !
b
where A denotes the maximum variation of the element Ek over the interval - '1
0<t'<t and p; is defined to be an upper bound of the time derivative of the o !
’ short-period variation '('li 1 ie€e, ) '
] ! !
| |n.\,x l < L )
i' Then it follows that L
I 0
i 6 6 f
Y M: p pk p‘| L
N - = Z = ¥, K ® Z —_ - (3-117) .
» ba.; Ax; ' Ad, AR, ‘;
' Wi L TR vl
i
and the second-order terms can be neglected when Hl
, \
. b ) {" a
x a Py P v o
' et Z = aE <1 (3-118) : '
f 4d, Au;
" k“ {. i
. { -
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Thus, the second-order terms can be neglected over the interval 0 < t < T, where

4
T « e ' (3-120)
e‘Z Ly i ‘2IGINAL PAGE IS
oy &; * POOR QUALITY]

Ked

The smaller the ratio of the short-period variation to the first-order long-period

variaticn, the greater the interval over which a first-order theory is valid. How

small these ratios must be depends on the time interval over which the first-
order theory is to be valid. The answer to this question can be provided only by
a thorough investigation for each dynamical system. However, an upper bound
of at most a few percent would be a likely guess for retaining a period of validity

of a few years.

On the other hand, a first-order theory is clearly inadequate when the amplitude
of the short-period variations is 20 to 30 percent of the long-period variations.
The author has investigated the case of a near-circular satellite (IMP-J) in

2:1 resonance with the Moon. The amplitude of the siori-period variations was
approximately 30 percent of the magnitude of the long-period variation caused
by the resonance. The first-order averaging theory produced poor results in
the ..cighborhood of a local extremum of the semimajor axis history, an indi-

cation of significant second-crder contributions to the motion.

3.5.2 Application of a Restricted Second-Order Theory of Averaging

The applicatien of a second-order averaging theory to all perturbations would
compromise the advantage of the low computational cost, which is characteristic
of the first-order theory. However, the application of a second-order averaging
theory, restricted to selected perturbations, may yield more accurate results
where the applicatioa of a first-order theory is marginal, or it may extend the
time interval over which the first-order theory is valid with a minimal increase

in cost.
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3.5.2.1 Nonspherical Gravitational Perturbation

The spherical harmonic expansion representing the potential of the nonspherical
gravitational field of the central body (Earth, Moon) contains the small param-

eters
n
c e . g Qe \"
'\‘m T ] n.m a

where a, designates the equatorial radius of the central body, the quantity a
designates the semimajor axis of the satellite orbit, and the coefficients Cn m
?

are observed quantities.

and Sn, m

The zonal harmonic coefficients Jn are defined by
Jp = - Cn\O

These small parameters are obviously bounded above by the numerical coeffi-

cients Cn,m and . Since J2 =~ 0(10'3) and since all other cocfficients

Sn, m
are of the order of le‘ for n 22, the oblateness term, Jo, in the geopotential
might seem to be a logical candidate for the application of a second-order aver-
aging procedure. In fact, a consistency argument is often made that second-
order oblateness contributions should be included if any other terms in the
spherical harmonic expansion for the geopotential model are also included.
According to the previous discussion, this is not necessarily the case since the
second-order contributions depend on the first~order shert-period variations of
the osculating elements and their time derivatives and not on the first-order con-
tribution to the long-period motion. However, it is reasonable to expect that if
second-order terms are necessary, the J, contribution would strongly dominate
over the other harmonics. Consequently, any second-order theory for the non-
spherical gravitational field could be limited, in most cases, to the J2 oblateness

contribution.
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3.5.2.2 Third-Body Perturbation

The case for the third-body perturbation is not generally as simple. The rele-

vant small parameters are the nth power of the parallax factor, i.e.,

n
a
€. = (—‘) n=2,3,...)
n a_’

where a and a' are the semimajor axes of the satellite orbit and third-body
orbit, respectively. (It is tacitly assumed that the disturbing third body is
an exterior perturbation, i.e., a<a',., If, however, a>a', the expansion

proceeds in powers of the inverse of the above parameter.)

The upper bound of this set of small parameters is unity in contrast to the upper
bound for the small parameters in the nonspherical gravitational model which is
of the order 0(10‘3). Clearly, for high-altitude sat_llites, the small parameters
are not really very small except for the large values of n. Physically, as the
parallax factor grows towrad unity, the third body produces stronger disturbances
(both short- and long-period) in the satellite motion. These larger disturbances
require a more complex model which is manifested by a greater number of terms

in the disturbing function expansion.

The recursive formulation of the disturbing functivi presented in Volume 11 of
this report can, in principle, be used to produce expansions to any arbitvary
order. However, high-order expansions can produce increased computational
cost, unavoidable numerical round-off and truncation errors, and, possibly,
crrors due to unstable recursion formulas. Also, the first-order averaged
equations of motion can be formulated in terms of the perturbing acceleration
using the Gaussian formulation (kquation (2-15)) to avoid entirely the problem

of slow convergence of the disturbing function expansion.

The slow convergence of the disturbing function is of far greater significance
to t.:e application of the method of averaging itself. The strong short-period

disturbances can no longer be neglected in formulating the averaged equations
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of motion: a higher-order theory becomes necessary. The stronger the short-
period disturbances, the greater the number of terms in the disturbing function
expansion which must be developed to second or higher order in the application

of the method of averaging.

An additional complexity is presented because the small parameters are not

entirely independent, specifically,

N

enm

emm = €n€m
Under these constraints, an order of magnitude argument would indicate that if
the term containing the small parameter €g produces significant short-period
! 9
contributions to the motion, then the terms containing the powers e% R e:;, e:; ,
and the products €5 € and €9 €y might contribute significant short-period

variations and, therefore, could be required in the averaged cquations of motion.

On the other hand, the numerical coefficients in the higher order terms of the
averaged equations of motion may render their contributions less significant
than the order of magnitude argument would indicate. If this were generally
true, the slow convergence of the disturbing function would have a less severe
impact on the order required in the application of the method of averaging, and
development of the first few terms of the disturbing function expansion to sccond
order might considerably extend the range of the parallax factor whe re the aver-
aged equations of motion are valid. At the very least, it would extend the appli-
cation of the method of averaging to those cases where a first-order application
was only mareinal and/or extend the interval of validity to tens of ycm‘sl in those
cases where a first-order theory already provides adequate results over a fow

years.

1, -~ .
Such very long predictions may be necessary to meet future mission paalvsis re-
quirements, e.g., permanent space station missions, solar power satellites, cote.
High-precision techniques are not well suited for such investigations,
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Furthermore, even though rough qualitative estimates of the behavior of the aver-
aged equations is known (see Section 3.5.1), very little is known quantitatively of
the time intervals over which a first-order application of the method of averaging
is valid. The basic difficulty in ascertaining an accurate estirnate of this time
interval is obtaining a suitable reference solution with which to gauge the aver-
aging theory. The standard approach has been to compare the results obtained
from the averaging theory with a high-precision reference solution directly or
with mean elements obtained in some manner from the high-precision reference.

1 Beyond the time intervals over which high-precision techniques .. ¢ valid, the
]

only reference is that obtained by direct observation.!

1t is assumed that these mean elements continue to provide an accurate picture
of the long-perivd and secular motion of the dynamical system for several years
or more. Of course, the exact length of this time interval depends on the mag-

nitude of the short-period variations in the osculating elements as shown in Sec-
tion 3. 5. 1. 2 of this document.

t
{

Eventually, the prediction from the first-order

theory will gradually diverge from the real solution. Without some comparison,
this divergence will probably become apparent only after it has reached extreme

proportions. A comparison with a complete first-order averaging theory aug-

mented to include the dominant second-order contributions from the oblateness

and third-body perturbations would provide some insight into the period of validity
of the first-order theory in addition to extending it. This approach, in essence,

computes the value of the integral in Equation 3-103).

In summary, a first-order application of ihe method of averaging is adequate for
several vears in those cases where the short-period variations in the osculating

elements are either absolutely small or small relative to the long-period varia-

tions of the first-order mean elements. The implementation of a complete second

This situation is not peculiar to the averaged orbit generator but also affects

the high-precision generator, since the only reference is provided by observa-
tions.
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or higher order averaging theory would reduce the computational advantages
characteristic of the first-order implementation. However, a second-order
implementation, restricted to only the dominant perturbations, would extend
the application of the method of averaging to a wider class of problems while
minimizing the additional computational cost, and it would also provide some

estimate of the time interval over which first-order averaging is adequate.
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SECTION 4 - FIRST-ORDER SHORT-PERIOD CONTRIBUTIONS
TO THE OSCULATING ELEMENTS

For many plications, the solution to Equations (3-2) (the true instantaneous
or osculating elements) is desired. Several techniques have been developed for
tne solution of these equations (e.g., Cowell, Encke, etc.~~-sec Reference 29);
however, these high-precision techniques share the characteristic of high com-
putational cost. To reduce this cost, the averaged equations of motion were

developed, which provide mean elements for the dynamical system.

In addition to the mean trajectory, the method of averaging pruvides (in principle)
a way to compute a jth-order approximation to the osculating elements from the
mean elements. First-order, and possibly second-order, approximations to the
osculating elements are sufficiently accurate for most applications. The com-
putational complexity of these approximations increases tremendously with the

order of the small parameter.

The effectiveness of representing osculating elements by applying a first-order
short-pericd variation to mean elements has been demonstrated by Lutsky and
Uphoff (Reference 5). It might appear that such a procedure would vitiate the
computational advantages associated with the method of averaging, and it has
alveady been demonstrated that mean elements arve sufficiently accurate for many
applications (References 4 and 9). Howover, for some applications, e¢.g., defin-
itive orbit determination procedures, the additional accuracy provided by the

first-order short-period variations might be necessary.

Based on the following discussion, it appears that the cost of evaluating the first-
order short-period variations using an analytical formulation! would be no more
costly than a single averaged derivative evaluation. This estimate is based on the
assumption that the evaluation of first-order short-period variations is performed

independently of the derivative evaluation.

lThe cost of evaluating the first-order short-period variations by a numerical
technique can be estimated by reviewing the method prosented in Reference 5.

+4-1
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As will be shown in Volume 1I, the mathematical formalism for the mean element
rates is also common to the first-order short-period variations. Consequently,
it is estimated that, if proper advantage is taken of this commonality, the cost of
evaluating the analytical formulation of the first-order short-period variations
could be reduced to possibly 20 percent (or even less) of the cost of a derivative
evaluation. For those environments where the utmost computational efficiency

is required, these variations should be applied only at judiciously selected points
along and/or at the end of the trajectory for applications with high-accuracy

requirements.

An equally important application for such approximations to the osculating elements
is the conversion of osculating elements to mean elements. An osculating-to-mean
element conversion can be developed by inverting the equations which specify the

mean-to-osculating element transformation.

The mean elements describing the long-period variations in the trajectory are
only as accurate as the initial mean elements and, hence, only as accurate as

the osculating-to-mean conversion. Existing conversion procedures are strictly
numerical (except for the Brouwer theory, which is limited to the low-order zonal
perturbations) and are based on quadratures or costly differential correction
procedures which require a high-precision orbit generator. Therefore, either
the initial conditions must be predetermined or the software system must have
access to a high-precision orbit generator as well as to the averaged orbit gen-
erator.l In addition, implementation of the short-period corrections appears to

require no additional theory beyond that necessary for the averaged equations of

motion.

This section presents a discussion of the first-order short-period variations of
the osculating elements and their application to both osculating-to-mean and mean-

to-osculating element conversions. This discussion is developed in the context of

1
If nonconservative perturbing forces, e.g., drag, etc., are present, theve is
no recourse (at present) to the numerical osculating-to-mean conversions.
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the Lagrange Planotary Equations (Equations (2-31)), A discussion of the first-
ordor short-period variations in tho contoxt of the Gaussian Variation o, Param-
etors (VOP) vquations and the numerical averaging approach can be found in

Reforence 5.
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4.1 MEAN-TO-OSCULATING ELEMENT CONVERSION

1 The near-identity transformation (Equation (3-3)) establishes the relation between
, mean elements and osculating elements. A general expression for the jth-order

il term in this transformation is given in Equation (3-29). Evaluation of this expres-
m sion for higher orders is quite complicated if not prohibitive. However, evaluation
2 of the first-order term is manageable. (This term also appears in the formulation
:

of the second-order averaged equations of motion (Equations (3-39).)

i Expressing the near-identity transformation to first order in the small parameter
yields

§

;’ | a, = '5.; * e’z‘ l(lil) (i=1,2,..445) (4-1a)
' 3

i

. 2=124 eqs’ici‘u (4-1b)
where
i - L S =2 - P r
| en, (XD = = [eF(a,l)dl (1=1,2,...,5) (4-2a)

L hi n v

ene AD = = [¢ [Ff(i,l) -2 vzmﬁi,i)] L -2m)

and FiS denotes the short-periodic part of the perturbing function, i.e.,

Fr= - (F)g (4-3)
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If the functions N 1 (where i = 1 through 6) can be evaluated, then Equations (4~1)
?

provide a first-order mean-to-osculating element conversion.

Using the Lagrange Planetary Equations (Equation (2-31)), it follows from Equa-
tion (4-3) that

6

€ F. ui.,l) = -Z [(&.,,‘6.\ 2RAD) <‘6.,, ) —— ORB(.Z: "> ] (4-4)
Lo 3

i

Because the nonzero Poisson Brackets are independent of the fast variable (see

Appendix A),
-\ RAD AR(E D) 3
<(E.h o.:‘) T>i = (a4, 5<—?i;—>i (4-5)

Consequently, Equation (4-4) can be expressed as

)

cFLD) - _Z (3,5 [bR(’& ) oa;: t)> ] e
) /1

e

Since

<6RGB> P—g'%)i (=1,2,.04,6) (4=T)
)

Ok POOR QUALITY
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Equation (4-6) can be simplified to read

where

S
eF‘ R = -Z(m,m L
1 "

®:R- <R>I

(4-8)

(4=9)

Substituting Equations (4-8) into Equations (4-2) and simplifying yields

and

6
S(=»
Tudh - 1)y [2EED
)

31

6
Za _ \j‘a RAD |,
oa;

:‘si

[Q y (R dI

€N (31 = - -%

+
piw

i3
plm

(4-10a)

(4+-10b)
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Since the disturbing function R is assumed to be appropriately continuous and

differentiable,

. .
OR _(-‘&,1) dl - % !’ R%(3,1) dL (4-11)
24, oa;

If the short-periodic function S(%, L) is defined as

s
s(@,1) = [ RM(Z,1)dl (4-12)
>
then Equations (4-10) take the form
6
TS a 3s - o
e"l;'t 2 - _ﬁ- 0.,,5;’) Sﬁ._s (i=1,2,...,5 (4-13a)
L
b
1 - -, 05 d ne = .
6726,1 = - = Z(!.ﬁ»ﬁ-—l + 33 721‘1(“'“ al (4-13b)
"li

Equations (4-13) are almost identical in form to the general form of the Lagrange
Planetary Equations (Equations (2-28)), with the exception of the reciprocal aver-

age mean motion factor and the second term in the equation for the short-period

&
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variation of the fast variable, €Tlg ; - Expressin_; Equations (4-13) explicitly
?

in equinoctial elements (a, h, K, P, Qs A) resul's in the following:

2%
eNg,y = A = =% X (4-14a)

A m e

B /35 h 8%
. €Mge= &M T ’K(FTEST)
! {(4-14b)
+ * (‘ 95 +q 9—5—
§ T AL
¥
l
. A B (2% & ¥
'i n‘3-1 B ) wA \oh 148 O
'E (4~14c)
! _*e <§ 3 i ) >
A anA8 \' op o9
N
o
| 5C (-85 -3 2
! € = A ° - _ - nN= _
z Map = £F 2% AB (“ ok ox>
‘, (4-14d)
| L
! PRI
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5 JC o5  _as  as
= 2 = k= - h— + —
€Tsy = 49 ARAB ( an "o T
1c? 25
47AB 3p
- As 11&.555 . B8 ) s fEi
erls.x 4 fA 34  nA(LB)\" % ' ok

where

1}
)]
>

s O o >» o»n
"
:i]

(@,2)
&

=2 Al
-Ri-%
-
lﬁfﬁaﬁ-i

the retrograde factor

The indefinite integral of Equation (4=14a) yields the last term in Equat.on (4-14f),

1!‘\‘.

(4-14e)

U T ARl Ml A A
- .

(4-14f)

These equations can also be expressed in terms of the direction cosines a, 3, %)

through Equations (2-35) and (2-36).

Explicit computation of S for the nonspherical gravitational perturbing fuaction

and for the third-body perturbing function is discussed in Volume 11 of this report.
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4.2 OSCULATING-TO-MEAN ELEMENT CONVERSION

An osculating-to-mean element conversion is immediately obtained by inverting
Equaticrs (4-1). These equations are identical in form to Kepler's equation and
can be numerically inverted, i.e., solved for the mean elements, by the same

techniques. These techniques require an iterative scheme, since these Kepler-

type equations are transcendental.

Expressions for the mean elements are obtained by writing Equations (4~1) in the

form

Q; = a,-en, (@D (4-152)
and

L= 2-em,,@0) (4-15b)
An a priori estimate of the mean elements will permit evaluation of the right-hand
sides of Equations (4-15). This, in turn, permits a computed approximation to
the mean elements. These approximate mean elements are used ‘o reevaluate

the right-hand sides of the equations and to compute a new approximation to the

mean elements. The kth approximation to the mean elements is expressed simply

as

a‘\k z Q'.. - eni‘l(ak-tiik.L) (i = 1’ 2,-. .,5) (1 '(J‘a)

Ik = 1- = en6'l(ak-t’ Ik.x) (4‘16b)
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Such a procedure should converge within two or three iterations, provided a good

a priori estimate is used.

A good estimate of the initial mean elements is provided by the osculating ele~

ments. The osculating elements differ from the true mean elements by order
¢ and, hence, introduce an error of only second order (i.e., 0(62)) when used

to evaluate the right-hand sides of Equations (4-16).

It should be noted tha' Equations (4-15) are of the same form as those given by

Brouwer (Reference 44) and for transforming from the Brouwer primed element

set (containing the long-period and secular motion) to the Brouwer unprimed
element set (a first-order approximation to the osculating elements). FEqua-
tions (4-15) take on the more familiar form of Brouwer's formulas when the

expression for the functions ‘Qi’ K given in Equations (4-14), are introduced.

> om— = ”
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APPENDIX A - THE EQUINOCTIAL ELEMENT SET
AND REFERENCE SYSTEM

A.1- DEFINITION OF THE EQUINOCTIAL ELEMENT SET

The equinoctial elements defined in terms of the Keplerian or classical elements

are given by

o

e sin(w+1IQ)

> P
B

e cos(w+ IQ)

x.
"

(A-1)

tanT (i[3) swQ
ton® (1)3) cos L

-
]

A2 L+ wrinl

where I is the retrograde factor and assumes the values

I= 1 for 0 Sigmw/2

I =-1 form/2<isnm

If I=1, the resulting element set is referred to as the direct equinoctial elements
and for I = -1 the retrograde equinoctial elements are obtained. The direct equi-
noctial element set produces a singularity in the Variation of Parameters (VOP)
equations for the inclination value i = /v and the retrograde element set produces
a singularity for the inclination value i = 0. Hence, both element sets are re-
quired if the possibility of a singularity in the VOP equations is to be avoided.
Since the inclination value i = 7 is seldom encountered, the direct elements will

suffice for the vast majority of applications.

Defining the value of the retrograde factor based on the cut-off value i = 7/2 is

quite arbitrary, and there is no compelling reason to change from direct to

A-1
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retrograde elements (or vice versa) in the middle of a numerical integration
simply because the value of the inclination passed through this arbitrary cut-off
value. On the contrary, this cut-off value is intended only as a guideline for
choosing, at the initiation of the integration procedure, the element set to be

used.

In Equations (A-1), the elements h and k are the components in the appropriate
(direct or retrograde) orbital frame of the eccentric vector, with magnitude e,
directed toward the periapse. The elements p and q can be considered as

the components of a vector with magnitude tan(i/2) directed toward the ascend-

ing node. The element A is the mean longitude.

Equations (A-1) are easily inverted to provide the transformation from the equi-

noctial to the classical elements, i.e.,

e = Vhta®

1-p2.g’) T
\ = Qreos (-1#)7
P+
Peq (A-2)

. LA P
W arctan (k) I arcton (%

~——

QL = arcton (ﬁ\)
1

£ = \-w-10

A-2
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A.2 THE EQUINOCTIAL REFERENCE SYSTEMS

The equinoctial reference frames (direct and retrograde), designated by the
orthogonal triad (/f\, 'g, /“\1) , are right-hand systems and use the satellite orbit
plane as the fundamental plane of reference. The unit vector T is directed
toward a point in the satellite orbit displaced from the ascending node through
the angle -Q for the direct system and through the angle Q for the retrograde
system. The unit vector w points toward the north equinoctial pole and is
identically the unit angular momentum vector. The vector @; is directed toward

A\
a point in the orbital plane 90 degrees in advance of the unit vector f and can

be expressed as

The relationship between the equinoctial reference systems and an arbitravy
right-hand reference system, e.g., the equatorial system, is shown in Figures
A-1 and A-2. Clearly, in both the direct and retrograde cases, a series of
three rotations is required to make the arbitrary reference system coincide
with each of the equinoctial reference systems. More specifically, a positive
rotation about the z axis through the angle € points the x axis toward the as-
cending node. A positive rotation about this new x axis through the inclination
angle, i, rotates the x,y plane into the f,g plane. Finally, for the direct
case, a rowation about the current z axis (coincident with the & vector) through
the angle ~Q points the x axis along the T vector. For the retrograde case,
this last roatation about the z axis is performed through the angle Q to align
the x axis with the T vector of the retrograde system. This series of rotations
provides the transformation of the coordinates of any point (¢.g., satellite pos-
ition) in the arbitrary system to the appropriate coordinates in the equinoctial

system.
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Figure A~1. Direct Equinoctial Coordinate Frame
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Figure A-2. Retrograde Equinoctial Coordinate Frame
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The transformation from the arbitrary system to the equinoctial system isg ex~

1 pressed as
‘=R
l Fo= TE (A-3)
ORIGINAL
A P4
where OF p OOR QUA(I;J?TY
T = Ry(-0) R (Y RQ) (A-4)

and ?a designates the position vector referred to the arbitrary reference system,
A s s 3 ] 3
To designates the same position vector referred to either the direct or retrograde

equinoctial system (depending on the value of the retrograde factor), and where

s 0 swnB 0

Rl(e) z | -snB8 ws6 0 (A-5)
0 0 i
and
4 0 0
R,(6) = 0 c0s® sind (A-6)

0 -sn® 036

are the matrix representations of the rotation through the angle 6 about the z and

X axes, respectively.
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(In the discussion that follows, the definitions 1
C.e = 0056
SG = snd - ,
are made, and it follows that L
Ciq = Cq
Siq * ~I5q

Multiplication of the three rotation matrices in Equation (A-4) yields the trans-

formation matrix

i 1 ;
N
Ca+IS3C CuSa(1-16)  -1548,
* a
T = | ICaSa(1-1¢)  I(sd«xcde) cgs; (A=T) f
§

It can be easily verified from Equations (A-1) that

i
S='——p——- A-8a)
{

C —_— (A-8b)
a (
Ve @
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S.‘ = (A-BC)

(1-p*-qM)1
Ci = -
1 1+P°‘+(L°‘ (A-8d)

et St ikoeat sibiiaiiie N

ard the transformation matrix is expressed in the equinoctial elementsx:l p and q

as b
-L A ] f

-p +% Qp% -apl £

i i

2 ——— A_n3 2

- 1 . pa“‘%a ap%I (1*‘9 - )I aq (A"g) E

- ap -3q (L-p*-q1

i

The rows of this transformation matrix are the components (direction cosines) of

A
the f, @, w vectors, respectively, in the arbitrary reference system, i.e.,

1-p*+ l.f‘
' - a “‘“
z  — A-10 ;
L*pa*%; P% (A~10a) ‘

1The definition of the elements p and q must, of course, be consistent with the
value of the retrcgrade factor.
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A.3 TRANSFORMATION FROM EQUINOCTIAL ELEMENTS TO POSITION
AND VELOCITY

The key to this transformation is the transformation from equinoctial elements

to position and velocity in the equinoctial reference system.  The position and

velocity in any right-hand orthogonal reference system is then obtained by

inverting the transformation matrix given in Equation (A-7), i.c.,

e -1 -

o = T ©e (A-11)
N ok SN

o ® T ¥ (A-12)

The transformation from equinoctial clements to the position and veloceity in the
equinoctial reference system makes use of the mean, cccentrie, and true longi-

tudes, respectively, which are defined by

A=z Lrw+IQ (A=13)
F 2 w++1IQ (A-14)
L = f+w+IN (A-15)

where 4, u, and f are the mean, cccentrie, and true anomalies.

B T e — s o —— A c*
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The position and velocily vectors can be expressed as

pers A A

Yo = Xf +Yq (A-16)
and

:‘ * A L] A

Te = Xf +¥Yq (A-17)

gince there is no motion out of the orbital plane.

Expressions for the coordinates of the position (¥,Y) in terms of the true long-

itude follow directly from analytical geometrv and are given by

X = reooslL (A-18)
Y = r sinl (A-19)
where
a(L-n-«*)
= (A-20)

i+ keosl + nanL

A-10

o =2

=3
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The coordinates of the velocity vector are easily obtained by differentiating the

expressions for the position coordinates and substituting the following two-body
relation into the result:

o Vi-rid ) nol Vi-me- ke

L = —= = = (A-21)
The final results are
% -na.(h+ sinl)

A-22)
Vi-ndad

and

. na (k + cos L)

Y = (A-23)
Vi-nd-we

The position coordinates can be expressed in terms of the eccentric longitude,
F, using the two-body relations

reos(L-9) = a cos(F-9) - ae (A-24)

and

; 2) sin(F-9) (A-25)

e n(L-¢) = a°
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where
i
s = = (A=264a)
= 1. Vi-nid ‘
and
P = w+ IO (A=26b)
The final results are
X = a,[(k-hap) cosF + hkpsinF-k] (A-27T)
and
Y= o [(1-K) sinF + hkg eosF - h ] (A=2%)

The velocity coordinates follow by differentiating Equations (A-27) and (A-28) and

substituting the two-body relation

. a na
F a —— g Smmtame (-\"‘29]
r r
yvielding
a
. na. .
X = — [hkﬁcosF - (L- ha,e) smF] (A-30)
A-12
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and

n (:l.a

Y — [(1- k*8) cosF - hk@ sinF ] (A-31)

L

where the radial distance is expressed as

r=af(l-kecsF - hsinF)

Equations (A-30) and (A-31) can also be obtained by combining Equations (A-18)
and (A-19) with Equations (A-27) and (A-28) to yield expressions for cos L and
sinL. These expressions are substituted into Equations (A-22) and (A-23) to

yield the final result.
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A.4 TRANSFORMATION FROM POSITION AND VELOCITY TO EQUINOCTIAL
ELEMENTS

The transformation from position and velocity in an arbitrary reference system

to the equinoctial elements could be obtained by inverting the proper equations

in Section A.3. However, appealing directly to the classical two-body problem

permits a more concise derivation. The semimajor axis is immediately obtained

by inverting the well known energy integral for the two-body problem which yields
o\ -1
P I Ll ) (A-32)
T

where T is the position vector of the satellite in the (X,¥,2) reference system.

The eccentricity vector is given by

'€=-l | (A-33)

and the unit vector normal to the orbital plane is the normalized angular momen-

tum vector given by

A rxTF¥
w = |?‘? (A-34)
A-14
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In view of Equation (A-~10c) relating the elements p and q to the vector w, it

follows that

el

. Wy
! P= vaa (A-35)
y ORIGINATL PAGE IS
OF POOR QUALITY
and
. .
| . — (A-36)

The elements p and q determined from Equations (A-35) and (A-36) are con-

sistent with the value of the retrograde factor 1. ¥

The unit vectors f and g may now be computed using Equations (A-10a) and

(A-10b). The equinoctial orbital elements h and k are computed using the
formulas
L - A
h a & g (A'37)
U and
- A
ﬁ k=28.4 (A-38)

The elements h and k are consistent with the veciors T and E with regard to

the direct and retrograde definitions.

l A-15
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The remaining element to be computed is the mean longitude, A.

First, the

position coordinates X and Y of the satellite relative to the orbital frame ?, B

al .
and w are computed from the expressions

A
X = vaenb = *. ¢
Y = rcsnl = r-%

Inverting Equations (A-27) and (A-28) yields the expressions

(1+K%8) X - hkgY

a Vi-hi k2

cosF = Kk =+

(1-W38)Y - hkBX

a Vi-nikd

sinfF = h +

which, when substituted into Kepler's equation

A= F-XasnF +hosfF

yields the desired result.
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(A-39)

(A-40)

(A-41)

(A-42)

(A-43)
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A.5 POISSON BRACKETS

In the present application, the Poisson Brackets must be given in terms of the

- S e O

equinoctial elements. The results are obtained by direct substitution into the
7 previously obtained results of Broucke and Cefola (Reference 33) and are listed
“ ! in Table A-1.
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Table A-1. Poisson Brackets of Equinoctial Elements

(a,N\y) = -das,
(X, h) = -hsy
(Mg, K) = -ksq
(Ao, P) -pSg
(Ap,q) = -q%s

1Auxiliary Variables:

L na?

[
-
"

1+p°‘+ tf‘

v U
L |
n 1} | ]

SLSa/(a&a)

w — <

5185/ (1+53)

A-18

(h, k)
(h,p)
(h,q)
(k, p)
%, q)
(9.

]

1,2

-5 5,
-kpsg
-k q 55
hpsg
hqss
-(l/a)sassl

2These expressions are valid for both the direct and retrograde element sets.
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A.6 PARTIAL DERIVATIVES OF THE EQUINOCTIAL ELEMENTS WITH
RESPECT TO VELOCITY
The partial derivatives da/ aF y Op/ 3Y, and dq/ 3T are obtained directly as
functions of the equinoctial elements by using the results of Broucke and Cefola
(Reference 33). However, the expressions for 3dh/ 33 , ok/ aF , and aAO/ ot
in terms of the classical orbital elements are not as easily translated into the
equinoctial elements. To compute these quantities, the following relationship
(obtained by Broucke (Reference 30)) is used:

Y

day Z ( N 3%

3E Ly, Qg YW (A-44)
pet

which requires the Poisson Brackets from Table A-1 and the partial derivatives
of the position vector. To obtain 3T/3h and 3F/3k , the following partial der-

ivatives of X and Y are needed:

OX kp;( a .

-S;'u_ = - + Yy YY (A-452)

A% hg X aQ G

— = + —(xvY - A-45

ok " G X G) (A-45b)

dY kp? Q .

—6;- = - " - 'a‘ (X Y +G) (A-45¢)

oY 2 XX hpY A-45d

—— € = e + -45 )

ok G n -
A-19
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With these results, the position partial derivatives can be specified, as shown in
Table A-2, Substitution of the results of Tables A-1 and A-2 into Equation (A-44)

gives the desired results, which are listed in Table A-3.
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Table A-2. Partial Derivatives of Position
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Table A-3. Partial Derivatives of the Equinoctial
Elements With Respect to Velocity

S ar

oF na

oh ! A . K

= - -Z[G¢+rx§]+—G’-(%YI-pX)Q

dk L © A h

’8:;‘_.=7L‘[G§+rY3]"€(%YI-pX)CJ

% (+pfegdYw

I G

b(]L (1+p°‘+qa))( W

¥ aG

AA -3 oh ok i A

2t E T re(eF ) e satary o e0d
A

A Waxt

y = -

G = notVi-n*-Kd
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